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EFFECT OF OPERATING  CONDITIONS ON THE  EXHAUST  EMISSIONS 

FROM A GAS TU RBlNE  COMBUSTOR 

by Daniel   Br iehl ,   Leonidas  Papathakos,  and  Richard J. S t r a n c a r  

Lewis  Research  Center 

SUMMARY 

Exhaust  concentrations of total  unburned  hydrocarbons,  carbon  monoxide,  and 
nitric  oxide  were  measured  from a single  5-57  combustor  liner  installed in a 
30-centimeter-  (12-in. -) diameter  test  section.  A  range of operating  conditions was 
studied  that is representative of idle,  takeoff,  and  cruise  for a variety of gas  turbine  en- 
gines with different  compressor  pressure  ratios  and  different  flight  speed  and  altitude 
requirements.  Tests were conducted  over a range of inlet  total  pressures  from 1 to 20 
atmospheres,  inlet  total  temperatures  from 310 to 590 K (100' to 600' F), reference 
velocities  from 8 to 46 meters  per  second (25 to 150 ft/sec),  and  fuel-air  ratios  from 
0.004 to  0. 015. Most of the  data  were  obtained  using ASTM A-1  fuel;  however, a limited 
number of tes ts  was performed  with  natural  gas  fuel. 

Emission  indexes  expressed  in  terms of grams of pollutant per  kilogram of fuel 
burned  and  combustion  efficiency  calculated  from  thermocouple  measurements  were  de- 
termined at different  operating  conditions  and  were  correlated with a combustor  operat- 
ing parameter  that  included  the  combined  effect of inlet  total  pressure,  inlet  total  tem- 
perature,  and  reference  velocity. At  low fuel  flows,  poor  fuel  atomization has a 
predominant  influence on producing low combustion  efficiency  and  high  hydrocarbon  and 
carbon  monoxide  emissions.  Higher  nitric oxide emissions  were  obtained  at  conditions 
yielding  high  reaction  zone  temperature  and long dwell  time.  Sampling error   a t   operat-  
ing conditions  for which  combustion  efficiency  was  below  about 90 percent  resulted  in 
abnormally low readings  for  hydrocarbon  emissions  thought  to be caused by fuel  droplets 
passing  through the combustor  along  the  liner  and  not  being  drawn  into the gas  sample 
probe. 

Appendix A  by  Albert  Evans, Jr., and  Gilbert M. Boyd describes the analytical 
methods  used  to  analyze  exhaust  gas  samples  for  total  hydrocarbon,  carbon  monoxide, 
oxides of nitrogen,  carbon  dioxide,  and  hydrogen. 



INT RODU CTI ON 

The  purpose of this  investigation was to  study  the  effect of operating  conditions  on 
the  gaseous  emissions of a typical  aircraft  gas  turbine  combustor.  References 1 to 3 
indicate  that  the  highest  hydrocarbon  and  carbon  monoxide  emissions  occur  during  idle 
and  that  the  highest  nitric  oxide  emissions  occur  during takeoff. The  relatively high 
hydrocarbon  and  carbon  monoxide  emissions  during  idle are, of course,  due  to  lower 
combustion  efficiency at  this  operating  condition.  Lower  combustion  efficiency at idle 
may  be  caused  by (1) lower  combustor  inlet  pressure  and  temperature,  (2)  lower  fuel- 
air ratio,  and (3) poor  fuel  atomization.  The  higher  nitric  oxide  emission  during  take- 
off i s  known to  be  caused by a higher  combustor  inlet  temperature which effects  i ts   rate 
of formation  (refs. 3 and 4). 

Previous  investigations  (refs. 2 and 5) have  already  established  the  concentrations 
of hydrocarbons,  carbon  monoxide,  and  nitric  oxide  in jet engine  exhaust,  together  with 
their  dependence on engine  operating  conditions.  Most of these  data  have  been  obtained 
from  either (1) turbojet  engine  tests in  which detailed  combustor  operating or perform- 
ance  data were not presented, o r  from  (2)  laboratory  combustor  tests  over a limited 
range of operating  conditions.  The  intent of the  effort  described  in  this  report was to 
expand  on these  previous  exhaust  emission  results  by  testing  an  aircraft  gas  turbine 
combustor.over a wide  range of operating  conditions. 

In addition,  the  exhaust  emission  measurements  were  compared with  combustion  ef- 
ficiency  determined  from  temperature  measurements.  Sampling  validity was checked  by 
comparing  combustion  efficiency  determined  from  thermocouple  measurements  and  fuel- 
air ratios  determined  from  fuel  andairflow  measurements  with  combustion  efficiency 
and  fuel-air  ratio  determined  from  gas  sampling  measurements. 

Exhaust  emission  data  were  obtained  from a single  5-57  combustor  liner  that was 
installed  in a 30-centimeter-  (12-in. -) diameter  test  section.  This  combustor  has a 
relatively  rich  primary  zone  fuel-air  ratio  at takeoff  conditions,  whereas  current  com- 
bustor  designs  have  relatively  lean  primary  zone  fuel-air  ratios in order  to  reduce 
smoke  emissions.  The  observed  emission  trends are probably  similar  for  both  combus- 
to rs  with  lean  and  rich  primary  zone  designs;  however,  the  emission  levels  may  be  con- 
siderably  different  for  combustors with  widely  different  primary  zone  designs.  Further- 
more,  this  combustor  uses  pressure  atomizing  fuel  nozzles;  therefore,  the  emission 
levels of combustors with either air atomizing,  carbureting, or vaporizing  fuel  nozzles 
may  also  be widely  different. 

Tests  were  performed  over as wide a range of operating  conditions as permitted by 
the  capacity of the  test  facility  and  were not necessarily  limited  to  the  actual  engine 
operating  conditions of the  combustor  that was chosen for this  study.  Inlet  total  pres- 
su re  was varied  from 1 to 20 atmospheres,  inlet  total  temperature  from 310 to 590 K 
(100' to 600' F), reference  velocity  from 8 to 46 meters  per  second  (25  to 150 ft/sec), 
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Figure 1. - rest installation. 
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and  fuel-air  ratio  from 0.004 to 0.015. Emission  indexes  for  total  hydrocarbons,  car- 
bon  monoxide,  and nitric  oxide  expressed  in  terms of grams of pollutant per  kilogram 
of fuel  burned are  compared with  combustion  efficiency  over  the  range of operating  con- 
ditions  that  were  studied. 

APPARATUS AND  PROCEDURE 

Faci I ity 

The  test  facility is shown  in figure 1 and is described  in  reference 6. The  test  com- 

Section A-A 

0 Total  temperature 
0 Gas sample  probe 
A Static  pressure 

Section B-B 
(Thermocouple 
location) 

Section C-C 
(Gas  sample 
probe  location) 

(a) Instrumentat ion  stat ions,  

"""_ 
""_" 

"""_ 

(b)  Location of instrumentation  at  each  stat ion. 

Figure 2. - Combustor  test  duct. 
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bustor is housed  in a 30-centimeter-  (12-in. -) diameter  pipe.  A  nonvitiating  preheater 
w a s  used  to  supply  conditioned  combustion air at temperatures  up  to 590 K (600' F). 
The test facility was connected  to  the  laboratory air supply.  Airflow  rates  and  combus- 
tor  pressures  were  regulated  by  remotely  controlled  valves  upstream  and  downstream 
of the test section. 

Test Section 

A cross section of the  test  section is shown  in  figure 2. The  combustor  reference 
a rea  was defined as the  cross-sectional  area  inside  the  30-centimeter-  (12-in. -) test  
section which is 7. 2X10-2 square  meter  (0.775 f t  ) or approximately  one-eighth  the  an- 
nular  cross-sectional  area of the  combustor  housing in the  5-57  engine  which  contains 
eight  combustor  liners.  To  simplify  fabrication  the  inlet  diffuser  and  the  exit  transition 
were  made of constant  area  ducting of circular  cross-section. 

2 

Test Corn bu sto r 

Tests  were  performed  with  the  standard  fuel  nozzle  manifold  from  the J-57 engine 
which  consists of six  dual-orifice  nozzles as shown  in  figure 3. The  combustor  liner 

C-71-814 
Figure 3. - Fuel nozzle  manifold for test combustor. 
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(a)  Upstream  view. (b) Side view. 

F igu re  4. - Combustor   l iner .  
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is shown in  figures 4(a) and  (b).  Fuel  flows  to  the  primary  and  secondary  chambers of 
the  dual-orifice  nozzles  were  controlled  by  separate  throttle  valves. Flow calibrations 
for  the  primary  and  secondary  chamber of a set  of six fuel  nozzles  are shown  in  fig- 
u re  5. Low pressure  drop  fuel  nozzles  were  used  for  natural  gas  fueled  operations. 

Instrumentation 

Airflows  were  measured  by  square-edged  orifices  installed  according  to ASME 
specifications.  Fuel  flows  were  measured  by  turbine  flowmeters.  Pressures  were 
measured  by  strain  gage  transducers. 

The  axial  location of the  test  instrumentation  planes  are shown  in  figure 2(b). The 
cross-sectional  positions of the  gas  sampling  probes,  thermocouples,  and  combustor 
s ta t ic   pressure  taps   are  shown in  figure 2(a). Exit  temperatures  were  measured by 
40 bare  junction  Chromel-Alumel  thermocouples  positioned at the  center of equal areas 
as shown in  figure 2(a). 

Exhaust  Emission Probe 

The  water-cooled  exhaust  emission  probe is shown  in  figure 6. The  probe was de- 
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signed  to  sample  the  exhaust  stream at five  positions  on  the  centers of equal areas. 
Two probes were used  to  gather a sample as shown  in  figure 2(a). All five  positions 
were  connected  together  outside  the test section  and  the  sample  flow of the two probes 
were manifolded  together.  The  sampling  line  length was 9 meters  (30 ft). The  temper- 
ature of the  sample  line was maintained  at  an  average  temperature of 390 K (250' F) 
with  electrical  heating  tape.  The  exhaust  sample was analyzed  for  total  unburned  hy- 
drocarbon  content  by  an  online  flame  ionization  detector.  Batch  samples  for  gas  analy- 
sis were  taken  in  150- or 300-milliliter  stainless-steel  vessels  for  carbon  monoxide 
analysis  and  for  nitric  oxide  analysis in 250- or 500-milliliter glass vessels.  The  con- 
tent of these  vessels was  analyzed  at a later  time.  Carbon  monoxide  content of the  ex- 
haust  sample was determined  using a Beckman GC4 gas  chromatograph.  Nitric  oxide 
content of the  exhaust  sample was determined by the  Saltzman  technique. A limited 
number of grab  samples was also  analyzed  for  carbon  dioxide  and  hydrogen.  Analytic 
techniques  used  to  determine  exhaust  emissions  are  described  in  appendix A. 

Test Conditions 

Tests  were  conducted  over a range of fuel-air  ratios,  inlet  temperatures,  pres- 
sures,  and  reference  velocities.  The  fuel  used was ASTM A-1 with  an  average 
hydrogen-carbon  ratio of 0.161 and a lower  heating  value of 43 200 joules  per  gram 
(18 600 Btu/lb). A limited  amount of data  was  also  obtained  using  natural  gas  fuel  with 
an  average  hydrogen-carbon  ratio of 0.327  and a lower  heating  value of  47 800 joules 
per  gram (20 53 1 Btu/lb) . 

RESULTS AND  DISCUSSION 

A summary of the  test  data is presented  in  table I. For purposes of comparison 
with  other air pollution  sources,  and  for  comparison at different  engine  operating  condi- 
tions, it is important  that  consideration  be  given  to  fuel-air  ratio.  To  overcome  the  dif- 
ficulty of comparing  engines  operating at different  fuel-air  ratios,  recent  practice  has 
been  to  relate  the  emission  levels  to  the  fuel  consumption. A convenient  parameter is 
an  emission  index  expressed  in  grams of species  per  kilogram of fuel.  The  emission 
data  in  the  figures  in  the body of the  report  are  given  in  emission index.  The  method of 
calculating  emission  index is found  in  appendix  B.  Data  plots  for  emission  concentration 
in  parts  per  million by  volume  (ppm)  corresponding  to  figures 8 to 12 in  the  body of the 
report  are  given  in  appendix C. 
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Effect of Improving Fuel Atomization 

Prior  to  examining  the  effect of pressure,  temperature,  reference  velocity,  and 
fuel-air  ratio on combustion  efficiency  and  exhaust  emissions, it is instructive  to  con- 
sider  the  effect of the  fuel  nozzle on these  results.  Variations  in  fuel  atomization  may 
result  in  differences  in  fuel  penetration.  Poor  fuel  atomization  leads  to  large  fuel  drop- 
lets  that  require  increased  time  for  vaporization. As droplet  size  increases,  the  vapor- 
ization  step  becomes  controlling  and  thus  combustion  efficiency  may  be  reduced  for a 
given  reactor  volume. 

The  production  5-57  dual-orifice  fuel  nozzle  assembly  (fig. 3) was used  with ASTM 
A-1 fuel  to  obtain  the  majority of the  test  data  reported  herein. Many of the  reductions 
in  combustion  efficiency  and  increases  in  hydrocarbon  and  carbon  monoxide  emissions 
that  occurred  during  variation  in  operating  conditions  may  be  traced  to  poor  fuel  atomi- 
zation.  Data  from  reference 8 are  presented  in  figures 7(a) to (d) to  illustrate  the  effect 
of improving  fuel  atomization.  The  model 4 combustor of reference 8 was equipped  with 
air-assist  fuel  nozzles  consisting of the  standard  dual-orifice  fuel  nozzle with fuel  flow- 
ing  through  the  primary  side  and  high  pressure air at 144 newtons  per  square  centimeter 
(166 psi)  flowing  through  the  secondary  side.  Figure 7(a) illustrates  the  improvement  in 
combustion  efficiency  obtained  with  the  use of the  air-assist  fuel  nozzle.  Combustion 
efficiency is defined as the  ratio of actual  temperature  r ise as determined  by  averaging 
40 exit  thermocouples  to  the  theoretical  temperature  rise  determined by the  fuel-air ra- 
tio  and  the  inlet  total  temperature  and  pressure.  The  accuracy of the  combustion  effi- 
ciency  determined  in  this  manner is believed  to  be  within k3 percent.  The  improvement 
in  combustion  efficiency is greatest-at  the  reduced  fuel  flows  required  at low fuel-air ra- 
tios.  The  reduction  in  hydrocarbon  production is shown in  figure  7(b).  The  flame  ioni- 
zation  detector  used  to  measure  unburned  hydrocarbons is calibrated  to  count  carbon 
atoms,  and  the  result is expressed as parts  per  million  carbon.  Some  assumption  must 
be  made as to  the  structure of the  unburned  hydrocarbon  molecule  to  determine  the  emis- 
sion  index.  The  assumed  form of unburned  hydrocarbon was CH2. At the  lower  values 
of the  fuel-air  ratio  and  consequent low primary  nozzle  pressure  differential,  the  reduc- 
tion  in  hydrocarbons is greatest.  Figure 7(c) shows  the  reduction  in  carbon  monoxide 
obtained  with  the air-assist fuel  nozzle.  The  improvement  in  fuel  atomization  with  re- 
sulting  increased  combustion  efficiency  causes  the  nitric  oxide  emission  to  increase as 
shown  in  figure  7(d).  Nearly all of the  oxides of nitrogen  produced  by  turbojet  combus- 
to r s  is in  the  form of nitric  oxide with the  balance  being  nitrogen  dioxide.  However,  in 
time  the  nitric  oxide  oxidizes  into  nitrogen  dioxide s o  current  investigators  sometimes 
express  nitr ic oxide  emission  indexes  in  terms of equivalent  nitrogen  dioxide.  The 
oxides  of  nitrogen  data in this  report   are  expressed  in  terms of equivalent  nitric oxide. 
In order  to  obtain  these  data  in  terms of equivalent  nitrogen  dioxide  one  must  multiply 
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the  nitric  oxide  emission  data  in  this  report  by  the  ratio of the  molecular  weight of ni- 
trogen  dioxide  to  the  molecular  weight of nitric oxide  which is l. 53. 

Effect of Combustor Inlet Total Pressure 

The  effect of combustor  inlet  total  pressure on  combustion  efficiency  and  exhaust 
emissions is shown  in figures 8(a)  to  (h).  The  data are shown for  a 15  meter  per  second 
(50 ft/sec)  reference  velocity.  The  tailed  symbols  indicate a nozzle  pressure  differen- 
tial of l e s s  than 34 newtons  per  square  centimeter (50 psi)  and are   marked so the  effect 
on combustor  performance of poor  fuel  atomization  may  be  taken  into  account.  Combus- 
tion  efficiency as a function of inlet  total  pressure showing the  effect of inlet  total  tem- 
perature is plotted  in  figure  8(a).  Fuel-air  ratio is 0.013,  and  data are shown for  two 
inlet  total  temperatures, 590 and 420 K (600' and 300' F). The low efficiencies  at a 
pressure of 1 atmosphere  are  due  to low nozzle  pressure  differential as explained  in  the 
previous  section.  The  pressure  effect on combustion  efficiency is not  shown to  be  great 
except  perhaps at pressures  below 2 atmospheres  where  there is a slight  downward 
trend;  however,  it is difficult  to  separate  the  effects of nozzle  pressure  differential  and 
data  scatter  from  the  effects of inlet  total  pressure.  The  single  data point for  natural 
gas  fuel  adds  further  evidence  that  the  effect of inlet  total  pressure is small  above 
2 atmospheres when fuel  atomization  and  vaporization  are not  limiting  steps.  Variations 
in  combustion  efficiency with inlet  total  pressure showing fuel-air  ratio as a parameter 
a r e  shown  in figure  8(b).  Inlet  total  temperature is 420 K (300' F). The  data at 0.0075 
fuel-air  ratio  have a somewhat  lower  combustion  efficiency  trend  than  the  data at 0.013 
fuel-air  ratio;  however,  the  effect of inlet  total  pressure  for  these  data is still not great. 
The  single data point for  natural  gas  fuel at a 0.0075  fuel-air  ratio is considerably  higher 
than  the  corresponding ASTM A-1 fuel  data  at  the  same  fuel-air  ratio. 

The  effect of inlet  total  pressure on combustion  efficiency  at  values  below a pressure 
of 1 atmosphere was  not investigated  since  present  day  aircraft  gas  turbine  combustors 
are  generally not required  to  operate at subatmospheric  pressures  except  during  altitude 
windmill  relight.  Previous  results  such as presented  in  reference 7 indicate  that  the 
reduction  in  combustion  efficiency  becomes  more  significant as the  inlet  total  pressure 
is lowered  below 1 atmosphere. 

As  would be  expected  from  the  combustion  efficiency  data,  the  hydrocarbon  emission 
data  presented  in  figure  8(c) show the  opposite  trend as that  shown  in  figures  8(a)  and  (b). 
The  fuel-air  ratio in figure  8(c) is 0.013 and the  inlet  total  temperatures  are 590 and 
420 K (600' and 300' F). There is no apparent  difference  noted  in  hydrocarbon  emission 
for  this  temperature  range. High values of hydrocarbon  emission  index  at low pressures  
a r e  thought due  to  poor  fuel  atomization as shown  by the  tailed  symbols. At an inlet  total 
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pressure of 20 atmospheres,  hydrocarbon  emissions are less than 3 grams  per  kilogram 
fuel at an  inlet  total  temperature of 590 K (600' F). Figure 8(d) shows  the  effect of 
variations  in  hydrocarbon  emissions as a function of inlet  total  pressure  with  fuel-air 
ratio as a parameter.  Inlet  total  temperature is 420 K (300' F). The  hydrocarbon  emis- 
sions are reduced  sharply as inlet  total  pressure is increased  from 1 to 4 atmospheres 
partly  because of poor  fuel  atomization as indicated  by  the  tailed  symbols.  There is a 
slight  trend  for  the  hydrocarbon  emissions  to  increase as the  fuel-air  ratio is reduced 
to  0.0075  corresponding  to  the  trend shown  in  figure  8(b).  The  natural  gas  fuel  results 
fall into  the  same  general  trend as the ASTM A-1  fueled  combustor  data. 

Carbon  monoxide  emission  data as functions of combustor  inlet  total  pressure  are 
shown  in  figure  8(e).  Fuel-air  ratio is 0.013  and  inlet  temperatures  are 590  and 420 K 
(600' and 300' F). The  data follow the  same  sharp downward  trend as the  hydrocarbon 
emission  data as the  inlet  total  pressure is increased  from 1 to 4 atmospheres. At the 
higher  inlet  total  temperature of 590 K (600' F), less carbon  monoxide is emitted  than 
for  the  data at 420 K (300' F) at any  constant  pressure.  Values of carbon  monoxide 
emission  index  are  below 2 grams  per  kilogram  fuel  at  inlet  total  pressure  above 
4 atmospheres  for  the  data  taken  at  the  higher  inlet  total  temperature.  Figure 8(f)  shows 
that a variation  in  fuel-air  ratio  with  the  inlet  total  temperature  fixed  at 420 K (300' F) 
produces  little  change  in  carbon  monoxide  emission  with  inlet  total  pressure. It may  be 
expected  that  the  lower  fuel-air  ratio  data will  show  higher  carbon  monoxide  levels. 
This is likely  due  to  the  lean  burning  conditions. 

The  nitric  oxide  emission  data  described  in  this  report  suffer  from a high degree of 
random  variation  causing  uncertainties  in  making a clear-cut  correlation  with  combus- 
tor  operating  conditions.  The low nitric  oxide  emissions  encountered in the  data  cause 
the  analytic  techniques  used  to  be  somewhat  compromised  in  accuracy.  Better  methods 
of analysis  and  improved  sampling  accuracy are  required  to  improve  the  quality of the 
nitric  oxide  emission  data. 

There is considerable  scatter  in  the  nitric  oxide  emission  data shown  plotted  in  fig- 
u re  8(g)  for a fuel-air  ratio of 0.013  and  inlet  total  temperatures of 590 and 420 K (600' 
and 300' F). Part of the  scatter  may  be  attr ibuted  to  sampling  error  in  measuring  con- 
centrations as low as 10  ppm or  less. An exhaust  concentration of 10 ppm corresponds 
to  an  emission  index of 0. 82 at  a fuel-air  ratio of 0. 013. The  data  are  always  below  an 
emission  index of 1 at an  inlet  pressure of 1 atmosphere. As the  inlet  total  pressure  is 
increased  above 2 atmospheres,  the  emission  index  shows a generally  increasing  trend 
reaching a maximum of 5.6  for  an  inlet  total  temperature of 590 K (600' F) at an  inlet 
total   pressure of 12 atmospheres.  The 590 K (600' F) inlet  total  temperature  data  ex- 
hibit a higher  nitric  oxide  emission  trend  than  the  data at 420 K (300' F). The  upward 
trend  in  the  nitric  oxide  emission  data with increasing  inlet  total  pressure  may  be  partly 
attributed  to  improved  combustion  efficiencies as a result  of better  fuel  atomization  due 
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to  higher  fuel  nozzle  pressure  differentials.  Varying the fuel-air  ratio  from  0.0075  to 
0.013  has  little  effect on nitric oxide emission as shown  in  figure  8(h). 

Effect of Inlet  Total Temperature 

Variations  in  combustion  efficiency  and  exhaust  emission with combustor  inlet  total 
temperature are shown  in  figures  9(a)  to (k). Combustion  efficiency  does  not  show a 
very  great  variation  with  increasing  combustor  inlet  total  temperature  for  inlet  total 
p ressures  of 2 and 10 atmospheres as shown  in  figure  9(a).  Fuel-air  ratio is 0.013  and 
reference  velocity is 15 meters  per  second  (50  ft/sec).  The  combustion  efficiency was 
almost  5  percent  higher at an  inlet  total  pressure of 10 atmospheres  than  at 2 atmo- 
spheres.  Combustion  efficiency as a function of inlet  total  temperature  showing  fuel-air 
ratio as a parameter is shown  in  figure  9(b).  Inlet  total  pressure is 2 atmospheres and 
reference  velocity is 15  meters  per  second  (50  ft/sec).  Changes  in  fuel-air  ratio had a 
negligible  effect on combustion  efficiency.  Increases  in  reference  velocity  have a slight 
effect on combustion  efficiency as illustrated  by  figure  9(c).  The  data shown a r e   f o r  a 
fuel-air  ratio of 0.013  and  an  inlet  total  pressure of 2 atmospheres.  The  combination of 
low inlet  total  temperatures  and low residence  times  caused by relatively high reference 
velocities is shown  to  cause  reductions  in  combustion  efficiency at the  lower  inlet  total 
temperatures. 

Variation in  hydrocarbon  emission  index with combustor  inlet  total  temperature is 
plotted  in  figure  9(d).  Reference  velocity is 15  meters  per  second  (50  ft/sec) and  fuel- 
air ratio is 0.013.  The  data show a linear  decrease in hydrocarbon  emission as the 
inlet-total  temperature is increased.  The  data at an  inlet  total  pressure of 2 atmo- 
spheres is four  to  six  times  higher  than  the  data at 10 atmospheres,  and  the  data  have a 
steeper  slope as inlet  total  temperature is reduced.  Variations in hydrocarbon  emission 
with  inlet  total  temperature  showing  fuel-air  ratio as a parameter   are  shown  in  fig- 
ure  9(e).  Reference  velocity is 15 meters  per  second (50 ft/sec)  and  inlet  total  pressure 
is 2 atmospheres.  The  data at a fuel-air  ratio of 0.0075 a r e  higher  than  the  data at 
0.013; however,  the  data  exhibit  similar  trends. As expected  from  figure  9(d),  they 
both  decrease with increasing  inlet air temperature.  Figure 9(f) demonstrates  the  effect 
of reference  velocity on  hydrocarbon  emissions with inlet  total  temperature.  Inlet  total 
p ressure  is 2 atmospheres  and  fuel-air  ratio is 0.013  for  these  data.  The  difference 
in the  curves is perhaps  due  to  improved  mixing at the  higher  reference  velocity. 

Changes  in  carbon  monoxide  emission  with  combustor  inlet  total  temperature a r e  
shown  in  figure  9(g).  The  fuel-air  ratio  for  this  plot is 0.013  and  the  reference  velocity 
15 meters  per  second (50 ft/sec). As with  the  hydrocarbon  data,  carbon  monoxide  emis- 
sion  decreases  markedly as the  inlet  total  temperature is increased.  The  data at an 
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inlet  total  pressure of 2 atmospheres are shown to be higher  in  magnitude  and to have a 
steeper  slope  than  the  data at an  inlet  total  pressure of 10 atmospheres.  Fuel-air  ratio 
variation on the  plot of carbon  monoxide  emissions  with  combustor  inlet  total  tempera- 
ture is shown  in  figure  9(h).  For  these  data,  inlet  total  pressure is 2 atmospheres  and 
reference  velocity is 15 meters  per  second  (50  ft/sec).  Unlike  the  hydrocarbon  emission 
data,  the  carbon  monoxide  emission  in  this  plot is not  strongly  effected  by  fuel-air  ratio. 
The  effect of variations  in  reference  velocity on carbon  monoxide  emission with inlet 
total  temperature is shown  in  figure 9(i). Inlet  total  pressure is 2 atmospheres  and  fuel- 
air ratio is 0.013.  The  data at the  higher  reference  velocity (30 m/sec (100 ft/sec)) 
show a higher  level of carbon  monoxide  emission  than  the  data at the  lower  reference 
velocity  (15  m/sec  (50  ft/sec))  thus  providing a good correlation with the  combustion 
efficiency  data. 

Variation of nitric oxide emission index with inlet  total  temperature is shown  in  fig- 
u re  9(j). Fuel-air  ratio is 0.013 and  reference  velocity is 15 meters  per  second 
(50  ft/sec).  There is a distinct  upward  trend  in  the  data at an  inlet  total  pressure of 
2 atmospheres,  which  confirms  the  findings of reference 10. The  data at an  inlet  total 
pressure of 10 atmospheres  tend  to  be  higher  than  the  data at an inlet  total  pressure of 
2 atmospheres  and  they  do  not  appear to have  any  variation with inlet  total  temperature. 
This  may  be  attributed  to  higher  primary  zone  temperatures  due  to  higher  combustion 
efficiency.  Variations  in  fuel-air  ratio  in  the  plot of nitric  oxide  emission with combus- 
tor  inlet  total  temperature  are shown  in figure 9(k). Reference  velocity is 15 meters  
per  second  (50  ft/sec)  and  inlet  total  pressure is 2 atmospheres.  There is an  increase 
in  nitric oxide formation as fuel-air  ratio is increased at the 590 K (600' F) inlet air 
condition as expected.  This is because of the  higher  primary  zone  temperature. How- 
ever, at lower  inlet air temperatures,  the  lower  fuel-air  ratio  produced  more  nitric 
oxide  than  the  higher  fuel-air  ratio.  This is an  unexpected  result.  The  little  effect of 
fuel-air  ratio  may  be  obscured  by  the  data  accuracy.  The  effect of changes in reference 
velocity on nitric  oxide  formation with inlet  total  temperature is shown  in figure 9(2). 
The  fuel-air  ratio is 0.013  and  the  inlet  total  pressure is 2 atmospheres. At a reference 
velocity of 30 meters  per  second (100 ft/sec)  the  formation of nitric oxide is reduced 
from  the  amount  formed at 15 meters  per  second  (50  ft/sec)  especially as the  inlet  total 
temperature is increased  to 590 K (600' F). This  may  be  attributed  to  the  adverse  effect 
on formation  rate  because of a decrease in primary  zone  dwell  time  caused by the in- 
creased  reference  velocity. 

Effect of Reference  Velocity 

The  effect of reference  velocity on combustion  efficiency  and  exhaust  emissions is 
shown  in  figures lO(a) to (h). Reference  velocity is defined as the  total  combustor air- 

18 



flow  divided  by  the  product of the  combustor  inlet  density  and  maximum  cross-sectional 
area.  Figure lO(a) shows a plot of the  variation  in  combustion  efficiency  with  reference 
velocity  with  inlet  total  temperature as a parameter  for a fuel-air  ratio of 0.013  and a 
combustor  inlet  pressure of 2 atmospheres. No significant  effect of reference  velocity 
on combustion  efficiency is apparent at inlet  total  temperatures of 590 and 420 K (600' 
and 300' F). However, at an  inlet  total  temperature of 310 K (100' F), there  appears 
to  be a relatively  strong  effect of reference  velocity on combustion  efficiency.  Combus- 
tion  efficiency  decreases  from  about 90 to 80 percent as reference  velocity is increased 
from  about 23 to 46 meters  per  second (75 to 150 ft/sec).  Also,  the  data  at 310 K 
(100' F) indicate  that  the  combustion  efficiency falls off slightly as reference  velocity 
is reduced  from 23 to  15  meters  per  second  (75  to 50 ft/sec).  Previous  results  have 
shown  that  for  most  combustors  combustion  efficiency  decreases  with  increasing  refer- 
ence  velocity;  however,  for  some  combustors, a maximum  value of combustion  effi- 
ciency  occurs  at a specific  value of reference  velocity  and wi l l  then  decrease as refer-  
ence  velocity is either  increased or  decreased. A reduction  in  combustion  efficiency 
with increasing  reference  velocity  may  be  attributed to a reduction in flame  stability  and 
dwell  time,  while a reduction  in  combustion  efficiency  with  decreasing  reference  veloc- 
ity  may  be  attributed  to  either  poor  mixing as the  result of a lowering  in  combustor 
pressure  drop or  to  poor  fuel  atomization as a result of a lowering  in  fuel  nozzle  pres- 
sure  differential as fuel flow is lowered.  Figure 10(b) shows  the  effect of fuel-air  ratio 
on the  data at 310 K (100' F) with  an  inlet  total  pressure of 2 atmospheres.  The  curve 
for a fuel-air  ratio of 0.0075 has  a similar  shape  to  the  curve  for a fuel air ratio of 
0.013;  however,  the  efficiency a t  a fuel-air  ratio of 0.0075 is generally  lower. 

Hydrocarbon  emission  data with reference  velocity  are  shown  in  figure 1O(c) for  an 
inlet  total  pressure of 2 atmospheres  and a fuel-air  ratio of 0.013.  Hydrocarbon  emis- 
sions  increase with a decreasing  inlet  total  temperature.  The  data at 590 and 420 K 
(600' and 300' F) show a slight  upward  trend as reference  velocity is increased.  The 
curve  for  the  data  at 310 K (100' F) has the  reverse  shape as the  combustion  efficiency 
for  the  same  inlet  total  temperature  and  shows a minimum  value  at  the  same  value of 
reference  velocity  where a maximum  in  the  combustion  efficiency  occurred.  Fig- 
ure  10(d) shows  the  effect of varying  the  fuel-air  ratio on the  data  taken  at 310 K (100' F) 
inlet  total  temperature. Although the  curve  for  the  data at a fuel-air  ratio of 0.0075  has 
the  same  shape as the  curve  for  the  data at a fuel-air  ratio of 0.013,  the  0.0075  fuel-air 
ratio  data has a higher  emission  trend. 

Carbon  monoxide  emissions  with  reference  velocity f o r  a fuel-air  ratio of 0.013  and 
an  inlet  total  pressure of 2 a tmospheres   are  shown  in  figure lO(e). The  data   are   s imilar  
to  the  hydrocarbon  emission  data  because  the  emissions  increase  with  decreasing  inlet 
total  temperature.  However,  the  rate of increase  in  carbon  monoxide  emission with 
increasing  reference  velocity is greater  than  for  the  hydrocarbon  emission  data.  Also, 
the  data at 310 K (100' F) continuously  increase  with  increasing  reference  velocity  in- 
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stead of reaching a minimum  value as in  the  hydrocarbon  emission data. This  may be 
attributed  to  the  strong  effect  that  combustor  dwell  time  has on the  oxidation of carbon 
monoxide  formed  in  the  primary  zone.  As  combustor  dwell  time is reduced, lesser 
amounts of carbon  monoxide are oxidized to  carbon dioxide.  As  shown  in  figure  10(f), 
reductions  in  fuel-air  ratio  for  the  data at 310 K (100' F) have  no  discernible  effect on 
carbon  monoxide  emissions. 

The  effect of reference  velocity on emissions of nitric  oxide is shown in  figure lO(g). 
Combustor  inlet  total  pressure is 2 atmospheres  and  fuel-air  ratio is 0.013. Combustor 
inlet  total  temperature is shown to  strongly  effect  the  nitric  oxide  formation  rate  with 
the  higher  inlet  total  temperatures showing increased  formation  rate. A single  flagged 
data  point at 590 K (600' F) inlet  total  temperature was not  used  in  drawing  the  curve. 
As  the  reference  velocity is increased,  combustor  dwell  time is reduced  and  nitric  oxide 
emission  decreases  for all the  values of combustor  inlet  total  temperatures shown in 
figure lO(g). The  data at an inlet  total  temperature of 590 K (600' F) show a steeper 
reduction  in  nitric  oxide  emission as reference  velocity is increased  than  the  data  at  an 
inlet  total  temperature of 420 or  310 K (300' or 100' F). The  effect of a reduction  in 
fuel-air  ratio on the  nitric  oxide  emission  at  an  inlet  total  temperature of 310 K (100' F) 
is shown in  figure  10(h).  Reducing  the  fuel-air  ratio  from  0.013  to  0.0075  increases  the 
nitric oxide  emission.  It would be expected  that a reduction  in  fuel-air  ratios would r e -  
sult  in  reduced  nitric  oxide  formation  because of the  decrease  in  primary  zone  temper- 
ature.  This  anomaly  may be due  to  errors  in  measuring  nitr ic oxide  concentrations 
below 10  ppm. 

Effect  of Fuel-Air   Rat io 

Variations  in  combustion  efficiency  and  exhaust  emissions with fuel-air  ratio are 
shown  plotted  in  figure l l(a) to  (h).  Combustion  efficiency  variations with fuel-air  ratio 
for  inlet   total   pressures of 2 and 10 atmospheres are plotted  in  figure  ll(a).  Inlet  total 
t empera ture   i s  420 K (300' F) and reference  velocity is 15 meters  per  second (50 ft/sec). 
The  data  for  an  inlet  total  pressure of 10 atmospheres  give  higher  efficiencies  than  the 
data   a t  2 atmospheres.  Also, with the  higher  inlet  pressure,  combustion  efficiency 
does not decrease  rapidly as fuel-air  ratio is reduced  below  0.010. At an  inlet  total 
p ressure  of 2 atmospheres,  the  reduction  in  combustion  efficiency with decreasing  fuel- 
air ratio is partially  due  to  reducing  nozzle  pressure  differentials  causing  poor  fuel 
atomization.  The  natural  gas  data  at  an  inlet  total  pressure of 2 atmospheres  and  an  in- 
let  total  temperature of 420 K (300' F), which is not  affected  by  fuel  atomization or  
vaporization  controlling  steps, are considerably  higher  in  combustion  efficiency  than 
the  data  for ASTM A-1  fuel at corresponding  conditions.  The  reduction  in  combustion 

22 



efficiency as fuel-air  ratio is reduced  may be attributed  to  the  formation of fuel-air  mix- 
tures  in  the  primary  zone  that are too  lean  to  burn  in  addition  to  the  influence of poor 
fuel  atomization.  Data were not  obtained  beyond a fuel-air  ratio of 0.0155;  however, it 
would be expected  that as the  fuel-air  ratio is further  increased, a fuel-air  ratio would 
be eventually  reached at which  combustion  efficiency would start   to  decline  because of 
either  fuel  enrichment or  volumetric  heat release limits.  Figure  ll(b)  shows  the  effect 
of inlet  total  temperature on combustion  efficiency  with  fuel-air  ratio.  Reference  veloc- 
ity is 15 meters  per  second (50 ft/sec)  and  inlet  total  pressure is 2 atmospheres.  Within 
the  accuracy of the  combustion  efficiency  data (53 percent),  there is no  significant  in- 
crease  in  efficiency with fuel-air  ratio as the  inlet  total  temperature is increased  from 
370 to  590 K (200' to  600' F). 

Variations of hydrocarbon  emission  index  with  fuel-air  ratio are shown in  fig- 
ure  ll(c).  Reference  velocity is 15 meters  per  second (50 ft/sec) and  inlet  total  tem- 
perature is 420 K (300' F). The  hydrocarbon  emissions  correlated with the  combustion 
efficiency  data are strongly a function of inlet  total  pressure with the  data  at  2  atmos- 
pheres exhibiting a much  higher  trend  than  the  data at 10 atmospheres.  The  hydrocar- 
bon  emission  data  at  an  inlet  total  pressure of 10 atmospheres is not a function of fuel- 
air ratio,  while  the  data  at  an  inlet  total  pressure of 2 atmospheres is a strong  inverse 
function of fuel-air  ratio.  The  data on hydrocarbon  emissions as a function of fuel-air 
ratio in figure  ll(d) show that as inlet  total  temperature is increased  the  hydrocarbon 
emissions  decrease. 

The  effect of fuel-air  ratio on carbon  monoxide  emissions with  inlet  total  pressure 
as a parameter is shown in  figure  ll(e).  Reference  velocity is 15  meters  per  second 
(50 ft/sec)  and  inlet  total  temperature is 420 K (300' F). As was the  case with the hy- 
drocarbon  emission  data,  the  carbon  monoxide  data  for  conditions of high inlet  pressure 
were lower  than  the  data  for low inlet  pressure.  Carbon  monoxide  emission is not a 
function of fuel-air  ratio  for  the  range of conditions  tested.  This is not  unexpected  since 
the  effect of lower  fuel-air  ratios  should  be  poor  fuel  atomization  and  formation of lean 
mixtures below the  flammability  limit.  Lower  fuel-air  ratios  should not necessarily 
affect  the  rate of oxidation of carbon  monoxide  to  carbon  dioxide  except  by a reduction 
of the  reaction  zone  temperature  because of lower  combustion  efficiency. An illustration 
of the  effect of the  combustor  inlet  temperature  parameter on the  variations of carbon 
monoxide  with  fuel-air  ratio is found in  figure  ll(f). As the  inlet  temperature is in- 
creased  to 590 K (600' F),  the  carbon  monoxide  emissions are reduced  from  their  level 
at the  lower  inlet  total  temperatures  and are a slight  inverse  function of fuel-air  ratio. 

Variation in nitric  oxide  emission  index as a function of fuel-air  ratio  with  inlet 
total   pressure as the  parameter is plotted  in  figure  ll(g).  Reference  velocity is 15  me- 
ters per  second (50 ft/sec)  and  inlet  total  temperature is 420 K (300' F). As with  the 
previous  nitric  oxide  emission  data  presented,  the scatter in the  data  may be partially 
attributed  to  sampling  error  in  measuring  concentrations of 10  ppm or  less. The  data 
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exhibit  the  reverse  trend when compared  to  the  hydrocarbon  and  carbon  monoxide  emis- 
sion  data.  More  efficient  burning (i. e. , high  efficiency  and low emissions  in  unburned 
products)  means  higher  primary  zone  temperatures  with  resulting  increases  in  nitric 
oxide  formation.  In  most  cases, high combustor  loading (i. e . ,  high  inlet  pressure)  re- 
sulted  in  nitric  oxide  emission  above  2.0  grams  per  kilogram  fuel. At the  lower  inlet 
total   pressures (2  atmospheres)  the  data  were  below 1 gram  per  kilogram  fuel.  Fig- 
ure  ll(h)  has  plotted  nitric  oxide  emission with fuel-air  ratio,  inlet  total  temperature 
being a parameter.  Reference  velocity is 15 meters  per  second (50 ft/sec)  and  inlet 
total   pressure  is  2 atmospheres.  Nitric  oxide is formed  in  higher  levels  and is a slight 
function of fuel-air  ratio as the  inlet  total  temperature is increased  to 590 K (600' F). 
The  data at an  inlet  total  temperature of 370 K (200' F) a r e  grouped with the  data  at 
420 K (300' F). These  data  are  generally  below 1 gram  per  kilogram  fuel. 

Effect of Correlating  Parameter (PTIV) 

Combustion  efficiency is plotted  in  figure l2(a) against a correlating  parameter 
made  up of inlet  pressure (P) multiplied  by  inlet  temperature  (T)  and  the  result  divided 
by reference  velocity (V). Previous  reports  (ref. 9) have  used  this  parameter  to  cor- 
relate  combustor  efficiency  data.  All  combustors  display a similar  trend with this  pa- 
rameter;  however,  only  the  data  for a given  combustor  design  operating  at a given  fuel- 
air ratio  may  be  represented by a single  curve.  There is a trend  for  the  data  to  group 
together  with  the  lower  values of efficiency  falling at  the  lower  values of the  correlating 
parameter. In some  cases,  the  drdp  in  efficiency  at low values of correlating  parame- 
te r  is due  to  poor  fuel  atomization  because of low fuel  nozzle  pressure  differentials as 
indicated  by  the  tailed  symbols.  The  data  affected  by  poor  fuel  atomization would not be 
expected  to  follow  the  trend of the  correlation. 

Variation of hydrocarbon  emission  with  the  correlating  parameter is presented  in 
figure  12(b).  As  expected,  these  data  reflect  the  reverse  trend of the  efficiency  data 
variation with the  correlating  parameter. Although considerable  scatter  exists  in  the 
data,  especially  at low values of the  correlating  parameter,  the  hydrocarbon  emissions 
increase  markedly as the  correlating  parameter is reduced  below  about 10x10 newtons- 
seconds - degrees K per  cubic  meter  (11.4~10  (lb)(sec)(OR)/ft ). 

6 
4 3 

Carbon  monoxide  emission  against  the  correlating  parameter is shown  in  fig- 
ure  12(c).  The  same  discussion  applies  to  these  data as those of figure  12(b).  There 
is less  scatter  in  the  data  at  high values of correlating  parameter. 

Emission  data  for  nitric  oxide  variation  with  the  correlation  parameter is shown  in 
figure 12(d). There  is  scatter  in  these  data  throughout  the  range of correlating  param- 
e te rs  shown.  One trend is nevertheless  apparent. At values of correlating  parameter 
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below 10x10 newtons-seconds - degrees K per  cubic  meter (11.4X10 (lb)(sec)(OR)/ft ), 
nitric  oxide  emission is in  most  cases  below 1. 5 grams  per  kilogram  fuel. At higher 
values of correlating  parameter,  corresponding  to  higher  combustion  efficiencies  and 
inlet  temperatures,  the  nitric  oxide  emissions  generally fall above 1. 5 grams  per  kilo- 
gram  fuel.  These  data show the  reverse of the  trend  observed  in  the  plots of unburned 
product  emissions. 

6 4 3 

Sample Validity 

On a portion of the  data  taken,  the  exhaust  concentrations of carbon  dioxide  and 
hydrogen  were  also  measured.  A  check  can  be  made on sampling  validity  by  calculating 
the  fuel-air  ratio  based on a mass  balance of exhaust  constituents  containing  carbon.  A 
ratio  can  then  be  made of the  fuel-air  ratio  obtained  by  this  method  (F/A)GS  called 
the  gas  sample  fuel-air  ratio  and  the  fuel-air  ratio  determined  by  measured flow ra tes  
of fuel  and air (F/A),. This  ratio  should  be  close  to  unity if  the  sample of combustion 
products  taken  by  the  sampling  probes is a valid  representation of the  exhaust  products. 
Calculation  can  also  be  made as to the  percent  inefficiency  caused  by  exhaust  concen- 
trations of carbon  monoxide,  hydrogen,  and  unburned  hydrocarbons. A component  ef- 
ficiency  based on the  individual  concentrations of hydrocarbons,  carbon  monoxide,  and 
hydrogen  were  calculated  for  each  data  point.  The  efficiency  based on the  exit  thermo- 
couples qTc can  then  be  compared  to  the  efficiency as determined  by  the  gas  sampling. 
The  ratio qTC/qGs is shown  plotted  against  the  ratio of local  to  measured  fuel-air 
ratio in figure 13. Data  are  shownglotted  for  various  ranges of qTc.  When the  effi- 
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ciency  ratio is l e s s  than  unity,  the  sample is not 
the  efficiency  ratio is seldom  greater  than  unity, 
fuel-air  has a range of about 0.65 to 1.2.  Thus, 

representative. As can  be  seen,  while 
the  ratio of gas  sample  to  measured 
the  fuel-air  ratio  determined  by  gas 

sampling is not  always  representative of the  fuel-air  ratio as determined  from  fuel  and 
airflow  measurements.  These  data  indicate  that  the  combustion  efficiency as deter- 
mined  by  the  gas  sampling  and  the  combustion  efficiency  determined  by  the  thermocouple 
agree only at the  higher  values of combustion  efficiency. As the  combustion  efficiency 
is reduced  below 90 percent,  the  agreement  becomes  poor.  This  discrepancy  may  be 
attributed to  liquid  fuel  droplets  passing  through  the  combustor  along  the  liner  and  not 
being  drawn  into  the  gas  sample  probe,  thus  leading  to  erroneous  hydrocarbon  emission 
concentrations.  Because of this  effect,  the  trends  in  the  hydrocarbon  emission  data 
may  be  in  error,  especially at low values of combustion  efficiency.  The  carbon  mon- 
oxide  emission  data  do  not  suffer  from  this  effect  and  should,  therefore,  be a good in- 
dication of combustor  performance  even  at low values of combustion  efficiency.  Other 
possible  explanation  for  poor  sample  representation  include  variations  in  sample  den- 
sity  throughout  the  exhaust  plane  and  nonisokinetic  sampling. 

SUMMARY OF RESULTS 

A  5-57  combustor  liner w a s  tested  at  various  operating  conditions  in a closed  duct 
test  facility  in  order  to  evaluate  combustion  efficiency  and  exhaust  emission of unburned 
hydrocarbons,  carbon  monoxide,  and  nitric  oxide.  Inlet  total  pressure was  varied  from 
1 to 20 atmospheres,  inlet  total  temperature was varied  from 310 to 590 K (100' to 
600' F), reference  velocity  ranged  from 8 to 46 meters  per  second  (25  to 150 ft/sec), 
and  fuel-air  ratio was  varied  from  0.004  to  0.015.  The  effect on combustion  efficiency 
and  exhaust  emissions of primary  fuel  nozzle  pressure  differential,  inlet  total  pressure, 
inlet  total  temperature,  reference  velocity,  fuel-air  ratio,  and  correlating  parameter 
was investigated  and  the  following  results  were  obtained: 

1. At low fuel  nozzle  pressure  differentials (below 50 N/cm (73 psi)),  poor  fuel 2 

atomization  resulted  in low combustion  efficiencies  and  consequently high emissions of 
hydrocarbon  and  carbon  monoxide.  Nitric  oxide  emissions a r e  slightly  reduced  by  this 
effect. 

2. Reducing  inlet  total  pressure  below 2 atmospheres  reduced  combustion  efficiency 
and  increased  hydrocarbon  and  carbon  monoxide  emissions.  However,  the  effect of inlet 
total   pressure was overshadowed  by  the  effect of lower  nozzle  pressure  differential. 
Carbon  monoxide  emissions a r e  below  2  grams  per  kilogram  fuel at inlet  pressures 
above 4 atmospheres  and  inlet  temperatures  greater  than 590 K (600' F). As the  inlet 
pressure  increases  from 1 to 20 atmospheres,  the  nitric  oxide  emission  index  ranges 
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f rom 0. 15 to  5.6, indicating  an  upward  trend as the  inlet   pressure is increased.  The 
effect of increasing  inlet  pressure on increasing  nitric  oxide  emissions is attributed  to 
higher  reaction  zone  temperature  because of improved  combustion  efficiency. 

3. The  effect of reducing  inlet  total  temperature on  combustion  efficiency  appeared 
slight  except at higher  reference  velocities;  however,  hydrocarbon  and  carbon  monoxide 
emissions  increased  with  reduced  inlet  total  temperature.  The rate of increase of hy- 
drocarbon and carbon  monoxide  emissions with reduced  inlet  total  temperature  was 
larger  at   lower  inlet   total   pressure  and  higher  reference  velocit ies.   Emission of nitric 
oxide  increased  markedly with increasing  inlet  total  temperature. 

4. The  effect of reference  velocity on combustion  efficiency  is not strong  except at 
the  lowest  inlet  temperature of 310 K (100' F) where  there is a marked  downward  trend 
in  combustion  efficiency  with  increasing  reference  velocity,  likely  caused  by  insufficient 
dwell time  for  the  reaction  to  go  to  completion. At an  inlet  temperature of 310 K 
(100' F), both  the  hydrocarbons  and  carbon  monoxide  emissions  increased  markedly with 
increasing  reference  velocity;  but  the rate of increase of the  emission  index for  carbon 
monoxide was much  greater  than  that  for  the  hydrocarbon  emission index. Nitric  oxide 
emissions were significantly  reduced  by  increased  reference  velocity  at  the high inlet 
temperature of 590 K (600' F). 

5. Combustion  efficiency fell off sharply as fuel-air  ratio was reduced  to  values be- 
low about 0.008 at  lower  values of inlet  total  pressure  and  temperature.  There was a 
corresponding  increase  in  the  hydrocarbon  emission index;  however,  the  effect  on  the 
carbon  monoxide  emission  index  appeared  to be negligible.  These  effects are  due  partly 
to  poor  fuel  atomization  and  partly  to  the  formation of fuel-air  mixtures  in  the  primary 
zone  below  the  flammability  limit. A slight  increase  in  nitric  oxide  emissions with in- 
creasing  fuel-air  ratio at an  inlet  total  temperature of 590 K (600' F) was attributed  to 
increased  reaction  zone  temperature  due  to  improved  combustion  efficiency. 

6 .  Combustion  efficiency  decreases  and  hydrocarbon  and  carbon  monoxide  increase 
markedly as the  correlating  parameter  (PT/V) is decreased  below a value of about 
10x10 newtons-seconds - degrees K per  cubic  meter  (11.4~10 (lb)(sec)('R)/ft ), at a fuel- 
air rat io  of 0.013. Nitric  oxide  emissions  tended  to  increase with increases  in  the  cor- 
relating  parameter. 

6 4 3 

7. Sampling error  resulted in low readings  for  hydrocarbons  emission as combustion 
efficiency was reduced  below  about 90 percent.  This  was  attributed  to  the  presence of 
significant  quantities of liquid  fuel  in  the  exhaust  that  was not collected  by  the  gas  sample 
probe. 

For  this  reason,  the  combustion  efficiency as determined  by  the  thermocouples  is a 
much  more  accurate  indication of combustor  performance  than  the  amount of inefficiency 
as determined  by  the  hydrocarbon  emission  data. When the  combustion  efficiency is 
above  90  percent,  the  inefficiency as determined  by  the  hydrocarbon  and  carbon  mon- 
oxide  emission  data is a better  indication of combustor  performance than the  thermocou- 
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ples which  have an  accuracy 
sented  in  this  report  may be 
exhaust  gas  sampling  points. 

of only ~ t 3  percent.  Some of the  scatter  in  the  data  pre- 
due  to  inaccuracies  caused  by  an  insufficient  number of 

CONCLUDING REMARKS 

The  purpose of this  investigation  was  to  gain a better understanding of the  effect of 
operating  conditions on emissions  and  determine what modifications  were  necessary  to 
reduce  emissions. The largest  emissions of carbon  monoxide  and  hydrocarbons  have 
been  at  idle which represents low values of inlet   total   pressure and  temperature  and low 
fuel  flows.  The  results  reported  herein  have  pointed  out  the  importance of the  influence 
of fuel  atomization on  combustion  efficiency  and  hydrocarbon  and  carbon  monoxide  emis- 
sions  at  idle. It would be expected  that low compression  ratio  engines wi l l  have  higher 
emissions of unburned  products  than  high  compression  ratio  engines.  It  can  therefore be 
assumed  that  the  most  important  factor  determining  emissions wil l  be either  the  com- 
pression  ratio or the  type of fuel  nozzle  employed.  Reference 8 indicates  that  an air- 
assist  nozzle was  effective  in  reducing  unburned  products  and  increasing  combustion ef- 
ficiency  at  idle  operating  conditions. 

It is to  be  expected  that with the  trend  toward  higher  compression  ratios or with re- 
generation  (higher  inlet  temperatures),  the  emissions of nitr ic oxide wi l l  increase 
(ref. 10). One  approach  to  reduce  nitric oxide emission is to  reduce  combustor  dwell 
time. 

At the  lower  combustion  efficiencies  (below 90 percent),  the  exit  thermocouples are 
a better indirect  indication of hydrocarbon  emissions  than  the  gas  sampling  technique  be- 
cause of the  effect of fuel  droplets  by-passing  the  gas  sample  probe. 

Lewis  Research  Center, 
National  Aeronautics  and  Space  Administration, 

Cleveland, Ohio, November 8, 1971, 
132-86. 
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APPEND1 X A 

ANALYTICAL METHODS 

by  Albert  Evans, J r. , and  Gilbert M. Boyd 

Each  exhaust  gas  sample  was  analyzed  for  total  hydrocarbon,  carbon  monoxide,  and 
oxides of nitrogen.  A  selected  number of samples  was  also  analyzed  for  carbon  dioxide 
and  hydrogen.  Standard  instruments  and  methods  were  used  for  the  analyses with  only 
slight  modifications  in  technique. 

TOTAL HY D  ROCA  RBONS 

Total  hydrocarbons  were  determined with a flame  ionization  detector  (FID)  Beckman 
Model  106E. In principle,  this  method  involves a hydrogen  diffusion  flame  into which the 
hydrocarbon  vapor is introduced  along with the  hydrogen  fuel. In general,  hydrocarbons 
of any  molecular  configurations are thermally  dissociated  into single carbon  ions. An 
electric  potential  between  the  burner  and  an  electrode  located  just  above  the  flame  causes 
the  carbon  ions  to  migrate  to  the  electrode,  thus  producing a current.  The  collecting 
electrode  is   part  of an  electrometer  amplifier.  The  burner  and  associated  controls  were 
contained  in a compartment  heated  at 370 K (206' F). Fuel  was high purity (99.999 per- 
cent)  hydrogen,  burned a t  a ra te  of 35  cubic centimeters per minute  (2.  14  in.  /min). 
Burner air was supplied a t  400 cubic  centimeters  per  minute  (25.4 in. /min).  Sample 
flow was maintained a t  2 l i ters  per  minute (122  in.  /min)  to a stream  splitter  located 
close  to  the  burner  where  the flow was divided,  3  to  5  cubic  centimeters  per  minute 
(0. 18 to 0. 30  in. /min)  being  fed  to  the  burner. Output signal  from  the  electrometer 
amplifier was fed to  a 5 millivolt  strip  chart  recorder.  The  instrument was capable of 
rapid  response (less than 1 min  for  full  scale)  and was free from  drift when calibration 
gases  were  used. With sample  gases  i t  was necessary  to  monitor  for 10 to 20 minutes 
because of drifting, which was attributed  to  slight  fluctuations  in  combustor  operation. 
A  portion of the  chart  record showing a steady  reading  for  at least 2  minutes was used 
for  the  data point. F u l l  scale  sensitivity was set  with standard gas mixtures  obtained 
commercially. Two mixtures containing  0.05  and 0. 50 percent  ethylene  were  available 
for  low and  medium  standards. A third  mixture  containing 1.0 percent  ethylene  and 
1.0 percent  methane  (equivalent  to 3.0 percent CH2) was available  for  the high  concen- 
tration  range.  These  mixtures were certified  accurate to 2  percent of the  components. 
Response of the FID is linear, so  calibration with these  mixtures  serve  equally  well   for 
low concentration of hydrocarbons. 

3 
3 

3 
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NITRIC OXIDE 

Although the only  oxide of nitrogen  produced  in  significant  quantity  by  the  combus- 
tion  process  in  the  gas  turbine  engine is nitric  oxide,  in  the  presence of excess oxygen 
this is oxidized  to  nitrogen  dioxide. A wet  chemical  method  based on the  Saltzman  re- 
agent  (ref. 11) which is specific  for  nitrogen  dioxide w a s  used  for  the  analysis.  Saltz- 
man  reagent is an  aqueous  solution of nitrogen-( l-naphthyl)-ethylenediamine dihydro- 
chloride (NEDA) in  sulfanilic  and  acetic  acids, which absorbs  nitrogen  dioxide  to  form 
an  intense  red-purple  color,  having its maximum  absorption at 5.5~10-~ meter 
(1. 8X10-6 ft). Sample  bottles  were  allowed  to  reach  ambient  temperature  in  the  labora- 
tory.  Unless a bottle w a s  known to  be at reduced  pressure, a stopcock was opened 
momentarily  to  equilibrate  the  sample  pressure  with  barometric  pressure.  Bottles  were 
then  weighted  and  cooled  slightly  with dry  ice   to   create  a partial  vacuum  before  the 
Saltzman  reagent was drawn  into  the  bottle  by  immersing  the  tip  in  liquid  reagent  and 
carefully  opening  the  stopcock.  Bottles  were  brought  to  room  temperature,  wiped  dry 
if necessary,  and  weighted  again.  The  volume of reagent  added was calculated  from  the 
increase  in  weight  and  density of the  reagent. Amount of reagent  used  varied  from 10 to 
20 milliliters (0. 34 to 0.68 f l .  02). Bottles  were  rotated  and  shaken  to  ensure good con- 
tact  between  sample  and  reagent. At least 15 minutes  were  allowed  for  color  develop- 
ment.  Liquid was then  drained  into a smaller  beaker  through  the  same  stopcock  used  for 
filling  to  ensure  mixing with any  reagent  retained in the  stopcock  bore.  Percent  trans- 
mittance was measured at 5. 5 ~ 1 0 - ~  meter ( 1 . 8 ~ 1 0 - ~  ft)  with a spectrophotometer  using 
a l-centimeter  (0.4-in. ) cell.  The  amount of nitrogen  dioxide w a s  determined by refer- 
ence  to a calibration  chart  prepared-previously  with  standard  samples of sodium  nitrite. 
The  following  equation was used  to  calculate  percent  nitrogen  dioxide (NO2): 

Mv D 
Percent NO2 = 100 

p 298 V-” 
760 t 

where 

M milliliter of  NO2 (298 K, 760 torr)   per  l i ter  of Saltzman  reagent,  from  calibration 
plot 

vr  volume of Saltzman  reagent  used,  liters 

D  dilution  factor 

Vs volume  gas  sample  bottle,  milliliters 
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p pressure of sample  in  bottle,  torr 

t  temperature at which pressure  of sample  in  bottle  was  measured, K 

The  sensitivity of the  method  for a 500-milliliter (16. 9-fl. -oz) sample, 20- 
milliliter  (0.68-fl.  -oz)  Saltzman  reagent,  and  1-centimeter  (0.4-in. ) absorption cell 
(path  length) is about 1 ppm.  However,  the  method  may give low resul ts  with  exhaust 
gas  samples  because  at  low concentration of nitr ic oxide  the  reaction with  oxygen to   form 
nitrogen  dioxide is very slow.  Reference 12 gives  an  equation  for  calculating  the  frac- 
tion of nitric  oxide  converted. At the 10  ppm level  5.6  hours would be required  for 
50 percent  conversion. In this work,  approximately  15  hours  elapsed  between  sampling 
and  analysis, which  should be sufficient  for at least  75 percent  conversion at the 10  ppm 
level  and  virtually 100 percent at 100  ppm.  Although the  data  reported  herein  may  be 
10 percent low, the  trends  indicated  should be valid. 

CARBON  MONOXIDE,  HYDROGEN,  AND  CARBON  DIOXIDE 

A  Beckman GC4 gas  chromatograph was used  to  determine  the  quantity of carbon 
monoxide,  hydrogen,  and  carbon  dioxide  in  the  sample  bottles. An oven  whose  operating 
temperature'was 370 K (200' F) accommodates  three  columns  at  one  time.  The  instru- 
ment oven contains a helium  ionization  detector, a thermal conductivity  detector,  and a 
flame  ionization  detector. 

The  sample flow was  through a Carle  valve with 2-cubic-centimeter  (0.21-in. 3-) 
sample  loops  into a molecular  sieve  column,  then  into  the  helium  ionization  detector, 
and  from  there  to  the  atmosphere.  A  second  portion of the  sample  was  passed  through a 
Carle  sample  valve with 0. 1-cubic-centimeter  (0.0061-in. 3-) sample  loops  into a 
Porapak Q column,  then  into a thermal conductivity  detector,  and  from  there  to  the 
atmosphere.  The  molecular  sieve  column  length  was  3.7  meters  (12  ft) with a 0. 48- 
centimeter  (3/16-in. ) outside  diameter.  The  Porapak Q length was 6. 7 meters  (22  ft) 
with a 0. 32-centimeter  (t/8-in. ) outside  diameter.  The  helium  carrier  gas flow ra te  
was 34 cubic  centimeters  per  minute  (2.1 in. /min).  The  carrier  gas  sweeps  the  sam- 
ple  from  the  sample  loop of the  sample  valve  into  the  columns  and  then  out of the  columns 
into  the  detectors. 

3 

The  constituents of the  sample are all absorbed on the  surfaces of the  column  pack- 
ing material  where  they are retained  for a specific  time  period.  The  retention  times of 
the  constituent  gases  in  the  molecular  sieve  column  were as follows:  neon, 1. 3  minutes; 
hydrogen, 1. 4  minutes;  oxygen,  2.0  minutes;  nitrogen,  2.6  minutes;  methane,  4.0  min- 
utes;  carbon  monoxide,  5.2  minutes. 

The  molecular  sieve  column is not  suitable  for  detection of carbon  dioxide.  The 
Porapak Q column i s  used  for  the  quantitative  detection of carbon dioxide. The  retention 
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t imes of the  constituent  gases  in  the  Porapak Q column are 1. 4 minutes  for  nitrogen, 
oxygen,  and carbon  monoxide  and 2. 5 minutes  for  carbon dioxide.  Note that this  column 
does  not  separate  carbon  monoxide  from air at the  operating  temperature. 

The  various  constituents, as they are  released  by  the  molecular  sieve at the  times 
indicated, are  carried  into  the  helium  ionization  detector.  The  response of this  detector 
to  any  gas  except  helium is directly  proportional  to  the  concentration of that gas  in  the 
sample  being  analyzed.  Therefore,  quantitative  results  are obtained.  The  detector will  
measure  gases  in the fractional ppm  range.  Within this  detector  helium is ionized  by 
establishing a high potential  difference  between  two  electrodes.  Electrons  and  photons 
result  from  the  ionization of the  helium.  The  photons are  permitted  to  enter a measur- 
ing  chamber  within  the  detector  where  they,  in  turn,  ionize  the  sample  gas  components 
as they  enter  the  measuring  chamber.  The  electrons  resulting  from  the  photoionization 
of the  component  gas  migrate  to  the  collector  electrode within the  measuring  chamber. 
The  voltage  resulting  from  the  current  generated in the collector  circuit is amplified  and 
used  to  actuate a strip  chart   recorder of an  electronic  digital  integrator. 

The  various  constituents which are   re leased by  the Porapak Q column  enter a ther- 
mal conductivity  detector.  This  detector h a s  four  filaments  connected  in a Wheatstone 
bridge  arrangement.  The  filaments  are  exposed  initially  to  the  helium  carrier  gas. A 
current of 200 milliamperes  flows  through  the  bridge  raising all four  filaments  to a 
steady  temperature. Two of the  f i laments  are housed  in  one  side of the  detector which 
sees  only pure  helium. When a sample  component  enters  the  side of the  detector  in 
which the  other two filaments  are  housed,  the  temperature  and  resistance of those two 
fi laments  are changed  because of the  difference  in  the  thermal  conductivity of the  Sam- 
ple  gas.  The  change  in  resistance  unbalances  the  Wheatstone  bridge  and  the  resulting 
voltage is measured with a s t r ip   char t   recorder  o r  an  electronic  digital  integrator.  The 
extent of the  unbalance  is  directly  proportional  to  the  concentration of the  component  gas 
in the  sample.  Qualitative  results  are  also obtained because  the  constituents of interest  
are  released  by the  columns  at known times. 
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APPENDIX B 

CALCULATION OF EMISSION  INDEX 

The  emission  index is defined as the  ratio of the  number of grams of pollutant 
formed  divided  by  the  number of kilograms of fuel  consumed.  The  amount of pollutant 
formed  can  be  expressed  by  the  equation 

M W p x m x p p r n  

where MWp is the  molecular  weight of the  pollutant, MWE the  molecular  weight of 
the  exhaust  products, m the  total  mass flow rate  through  the  combustor  composed of 
the  sum of the air and  the  fuel  flows,  and  ppm  the  concentration of the  pollutant  in  parts 
per  million. When dividing  by  kilograms of fuel  and  simplifying  the  equation  becomes 

where F/A is the  fuel-air  ratio  and E1 is the  emission index. Values  used  for  the 
molecular  weight of the  pollutant  were 30 for  nitric  oxide, 28 for  carbon  monoxide,  and 
14 for  hydrocarbons.  The  assumed  molecular  weight of the  exhaust  products is 29. 
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APPENDIX C 

EMISSION DATA IN P P M  

The  figures  discussed  in  the body of the report  have  emissions of hydrocarbons, 
carbon  monoxide,  and  nitric  oxide  presented  in  terms of emission index. For the con- 
venience of the  reader who might  desire  to  see  the  emission  results  in  terms of par t s  
per  million by  volume  (ppm),  figures 8 to 12 in  the body of the  report   are  replotted  in 
th i s  appendix. The  figure  numbers are the  same  for  the ppm figures with the  exception 
of the  prefix C: for  example,  figure  8(c) is given in appendix C as C8(c). 
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Figure C8. - Effect of  combustor  inlet  total  pressure  on  exhaust  emissions.  Reference  velocity. 15 meters Per  second (50 ftlsec). 
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Figure C9. - Concluded. 
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s ion  wi th   in le t   to ta l   temperature 
showing  reference  velocity  as  pa- 
rameter.  Fuel-air  rat io, 0.013; 
in let   total   pressure,  2 atmos- 
pheres. 
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atmospheres. 310 K (l@ F). 

Figure  C10. - Effect of reference  velocity on   exhaust -emiss ions .  
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Figure C11. - Variations in  exhuast  emissions  with  fuel-air ratio.  Reference  velocity, 15 meters  per second (50 ftlsec). 
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TABLE I. - 

~ S T M  A-1 fuel  used  except when 
- 
!nlet 
total 
x e s -  
sure, 
atm 

- 
0. 91 
1. 11 
1. 11 
1.2f 
1. 1: 

1.02 
1.02 
1. 02 
1. oe 
1.05 

1. 07 
1. 10 
1.05 
1.09 
1. 10 

1.  18 
1. 20 
.98 
1. 05 
1.01 

1. 22 
1. 11 
1.06 
1. 09 
1. 07 

1. 06 
1. 96 
2.21 
2.  03 
2.09 

2.05 
2.04 
2. 10 
2. 11 
2. 04 

2. 04 
2.21 
2. 42 
2.08 
2.  03 - 

!nlet tern 
perature 7 - 
K 

- 
57: 
294 
423 
58E 
58: 

57 3 
573 
514 
304 
422 

583 
59 1 
30 1 
59 1 
594 

588 
587 
302 
416 
584 

306 
304 
302 
303 
366 

420 
582 
586 
584 
42 1 

315 
416 
418 
418 
418 

414 
413 
411 
413 
412 
- 

- 
OF 

- 
575 
70 
302 
595 
593 

572 
572 
574 
87 
299 

589 
603 
81 
601 
609 

598 
596 
84 
288 
59 1 

90 
8a 
84 
86 
198 

296 
588 
594 
592 
297 

107 
289 
292 
293 
293 

286 
184 
279 
!84 
!82 
- 

Reference YE 
locity 
- 
m/st  

- 
17. 0 
13.  9 
13.  3 
39.0 
27.  6 

14.  2 
13. 8 
14. 6 
14.  5 
14. 7 

14.  4 
28. 1 
14. 8 
28.  2 
27.  4 

40.  5 
39.  9 
15.  5 
13.  4 
14. 2 

37.  2 
27.  5 
14. 4 
28.  3 
29.  2 

29. 1 
15. 8 
14.  2 
14. 8 
15. 2 

15.  5 
15.  2 
15. 0 
15.  2 
15.  4 

I. 2 
28. 2 
36.6 
I. 0 
14.  9 
- 

- 
tt/sec 

- 
55.  8 
45.  5 
43. 6 
128 
90. 6 

46. 7 
45.  4 
41. a 
41.  6 
48.  3 

47.  4 
92.  2 
48.  4 
92.  5 
89.  9 

133 
131 
50.  9 
44. 1 
46.  5 

122 
90.  1 
47. 1 
92.  8 
95. 7 

95.  5 
52. 0 
46.  5 
48.  4 
50. 0 

51. 0 
49.  8 
49.  2 
50. 0 
50. 6 

23. 7 
92.  5 
20 
23. 0 
48.  9 
c_ 

7 __ 
Inlet 
Mach 

numbe 

__ 
0. 035: 
,0403 
.0322 
,0805 
,056E 

,0296 
.028E 
. 0309 
,0415 
,0357 

,0298 
.0576 
.0424 
,0578 
,057 1 

.OS32 
,0824 
,0445 
.0331 
.0292 

. 1060 

.Ole4 
,0412 
.0809 
,0760 

.0708 
,0329 
,0292 
,0304 
,0369 

.0436 

.0311 
,0365 
.0371 
,0376 

,0177 
,069 1 
,0896 
.0172 
.0366 
- 

T Airflow 

0.71 
1.33 
.89 

2 .  16 

1. 36 

.64 

.64 

. 6 7  
1. 32 
.94 

.68 
1. 33 
1. 32 
1. 32 
1. 32 

2. 07 
2.09 
1.  29 
.88 
.63 

3.73 
2.  51 
1. 29 
2.  58 
2.19 

1. 88 
1. 37 
1. 31 
1. 31 
1. 92 

2.  58 
1. 92 
1. 92 
1. 92 
1. 91 

.91 
3.84 
5. 44 
. 90 
1. 88 
I_ 

- 
Ib/se 

" 

1.57 
2.99 
1. 91 
4.7E 
3. oc 

1. 42 
1.  42 
1. 4E 
2.91 
2.08 

1. 50 
2.94 
2.91 
2.91 
2.91 

4.  57 
4. 60 
2.85 
1. 94 
1.  38 

8.  23 
5. 66 
2.84 
5. 69 
4.82 

4.12 
3.03 
3.01 
2.89 
4.  24 

5. 69 
4.  24 
4.24 
4.  23 
4.22 

2.01 
8.47 
12.0 
1. 99 
4.  14 
- 

T 
___ 
Fuel- 
lir  ra 

tio 

__ 
). 0127 
,0137 
.0144 
,012 
,013 

.005 

.008 
,015 
.0136 
.0132 

,0132 
,0133 
,0131 
,0134 
.0132 

,0130 
,0127 
.0135 
,0147 
.0140 

,0080 
,0133 
,0078 
,0078 
,0133 

,0139 
,0129 
.0129 
,0137 
,0133 

.0131 

.0050 
,0080 
,0148 
,0130 

0137 
,0130 
,0135 
,0138 
0133 
__ 

- 
K 

" 

828 
667 
82 1 
997 
1024 

677 
743 
1058 
708 
787 

783 
1037 
699 
1028 
LO34 

1035 
1032 
7 10 
814 
852 

546 
689 
446 
557 
810 

898 

:::~ 
041 
897 

808 
507 
707 

N/cm' 

1030 

135 1335 
33.3 1017 
67.8  140 
14.  3 

67.6  1384 

759 "." 
878 3.4 
1495 10. 3 
815 34.7 
957 14.9 

949 2.7 
1406 35.5 
799 42.6 
1391  43.  5 
1401 43.8 

1403 
109  1398 
109 

818 

6. 3  1073 
18. 7 1006 
43.9 

522 

543 
147 343 
157 780 
123 

115 998 
57.0 

1157 

46.  4  1414 
56.6  1396 
59. 1 1367 
90. 3 

91.6  ,155 

995 

34.7  812 
7.2  452 

166 

Exit  tern-  Primary  fuel 
perature  nozzle  pres- 

sure  differen- - 

I 

1 

1 

1 

2 

1 
1 

2 
3 

1 
- 

- 
psi 

20. I 
98. ' 
48. : 

__ 

196 
98. 

5. ( 
15. ( 
50. : 
21. f 

3. < 
51. I 
61. t 
63. 2 
63. 5 

I58 
I58 
63. 7 
27. i 
9. 2 

179 
!28 
!I4 
82.7 
167 

13 1 
85. 8 
82. 2 
61.  3 
33 

41 
10.4 
50.3 
78 
37 

33.4 
88 
07 
33. 6 
34 - 

~~ 

Secondary fuc 
nozzle  pres- 
sure  differ- 

- el 

N/cm' - 
"" 

"" 

"" 

"" 

"" 

"" 

_". 

"" 

"" 

"" 

"" 

"" 

"" 

_". 

_". 

"" 

"" 

_". 

"" 

_." 

"" 

"" 

"" 

"" 

"" 

"" 

"" 

"" 

"" 

"" 

1. 4 
"" 

"" 

. I  
"" 

"" 

3.4 
20.  7 
"" 

"" 

- 

11 - 
psi 

~ 

" _  
" _  
." 

" _  
". 

." 

". 

". 

" _  
" _  
"_  
" _  
" _  
." 

" _  
" _  
." 

" _  
" _  
"_  
". 

". 

" _  
". 

". 

" _  
". 

." 

." 

." 

2 
" _  
" _  

1 
" _  
" _  
5 
30 

"_  
." 

Correlating  parameter 

' t  (N)(K)(sec: 

m3 

3. 24x10' 
2.  38 
3. 60 
1.93 
2.43 

4.  16 
4.  38 
4.  14 
2.  29 
3.07 

4. 38 
2.  35 
2. 17 
2. 32 
2. 37 

1.14 
1. 18 
1. 95 
3.  29 
4.  23 

1.00 
1. 26 
2.  26 
1. 18 
1. 37 

1.  54 
7. 30 
9.  25 
8. 17 
5. 85 

4.  21 
5.  72 
5.93 
5.  75 
5.  58 

11.9 
3.29 
2. 76 
12.  5 
5. 69 

( W 0 R ) ( s e c )  

ft 3 

3.11~10~ 
2.  73 
4.  12 
2.21 
2. 79 

4.  71 
5. 02 
4.75 
2. 63 
3.  52 

5. 02 
2.69 
2.  49 
2.66 
2. 72 

1. 99 
2. 04 
2.  23 
3. 77 
4. 85 

1. 15 
1. 44 
2.  59 
1. 35 
1.  57 

1. 77 
8.  36 

10. 6 
9. 36 
6. 70 

4.  83 
6. 56 
6.80 
6. 59 
6. 39 

13. 6 
3.  71 
3.  16 
14.  3 
6. 52 
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:ST RESULTS 

t ed   in   in le t   to ta l   p ressure   co lumn1 
~ 

Hydrocar -  
b o n s  I - 

g/kg  
f u e l  

1 7 . 3  
12 .2  
22.3 

- 

7.53 
6.66 

61.  4 
48 .1  
19.  2 
25.  2 
17. 1 

22.1 
19.0 
23 .0  

3 .63  
3.68 

2. 57 
2.69 

21.2 
25. 6 
31. 0 

41.  9 
31.  9 
42. 1 
60.  2 
26 .6  

30.6 
"." 

6.1C 
1. 50 

15.9 

2 0 . 1  
46.7 
2 6 . 3  
12 .1  
13.0 

2.9E 
5. oc 
6.0: 

.67 
7.1c 
- 

- 
PPm 

~ 

448 
3  40 
G 56 
185 
177 

633 
791 
587 
701 
46 1 

597 
5  16 
6 12 

99 
99 

68 
68 

586 
768 
883 

6 86 
863 
672 
960 
7 20 

865 
". 

161 
42 

43  1 

538 
481 
432 
365 
3 46 

83  
133 
167 

19 
193 
- 

Carbon  mon- 
oxide - 

g/kg 
fue l  

60. 7 
23 .0  
87 .1  
7 3 . 0  
41.  2 

48.  7 
62.  7 
77 .8  

~ 

125 
91.9 

47.7 
63. 3 

186 
54.0 
54.8 

81.  2 
83. 1 

161 
135 
69.  2 

3  19 
298 

69. 1 
251 
278 

187 
29.  9 
20.  4 
25. 0 
58. 3 

116 
193 
50.9 
50.  7 
53.4 

"." 

""_ 
""_ 

7.2  
75.  8 

- 
'pm 

~~ 
~ 

778 
322 

L280 
895 
548 

251 
515 

,190 
1740 
L240 

644 
860 

!490 
7  40 
7 40 

1080 
LO80 
!220 
!030 
990 

!620 
1050 
554 

!010 
17 80 

!6 50 
394 
269 
3  50 
793 

1550 
995 
418 
765 
7  10 

."_ 

.". 

."_ 
102 

1030 
~ 

Exhaus t   emiss ions  

T- Nitric  oxide - 
$/kg 
f u e l  

- 
0. 82 

. 3 8  

. 3 6  
1. 8 3  
2. 10 

. 6 2  

. 5 2  
1. 33  
. 3 9  
. 5 6  

. 4 8  
1. 34 
. 2 4  

1. 18 
1.  52 

1. 13 
1. 16 

. 0 8  

. 9 3  

. 15 

. 13 

. 16 

. 13 

. 13 

. 0 8  

. 1 5  
3 . 0 1  
3 .01  
2.  15 

. 7 9  

. 5 6  

. 4 2  

. 7 8  

. 3 5  

. 4 8  

1. 22 
. 6 4  
. 8 5  

1. 44 
. 3 9  - 

- 
PPm 

- 
10 

5 
5 

21  
26 

3 
4 

19 
5 
7 

6 
17 
3 

15 
19 

14 
14 

1 
13 
2 

1 
2 
1 
1 
1 

2 
37 
37 
28 
10 

7 
2 
6 
5 
6 

16 
8 

11 
19 

5 
- 

r Carbon  dioxide 

Combus-  
t ion  effi-  

ciency 

53. 1 
68. 1 
71. 6 
91. 8 
89.  5 

55. 9 
53.  4 
88.  9 
14. 8 
71.  7 

40. 8 
90.  8- 
76. 1 
88. 1 
91.  7 

92.  8 
94. 6 
75.  8 
73. 1 
51.  8 

72.  9 
72.  2 
45. 0 
79. 1 
85. 1 

89.  2 
90.  3 
92.  6 
89.  9 
92. 6 

90 .6  
44. 5 
90.  3 
95.  9 
95.  7 

93.  7 
92.  5 
94.  2 
94. 6 
94.0 
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TABLE I. - Continued. 

[AsTM A-1 fuel  used  except when 
- 
Inlel 
total 
pres 
sure 
atm 
- 
2. 2 
2.  3! 
2. 11 
2. O !  
2.  21 

1. 9' 
2.0: 
2.0' 
2. l! 
2.21 

2. 11 
2.11 
2.  4f 
2.  7c 
2. 5€ 

2.4; 
2.0; 
2.0: 
2.01 
2.  31 

2.23 
2.03 
2.06 
2.  12 
2.49 

2. 12 
2.02 
1. 98 
2. 41 
2. 42 

'2. 09 
2.08 
2. 04 
2.  16 
3.01 

2.99 
3. 20 
3. 14 
4. 06 
4.07 

Natu 
- 

T; nlet  tem 
perature 
- 
K 

- 
411 
41: 
41: 
411 
301 

42. 
58' 
58i 
58t 
58t 

30; 
30: 
30: 
306 
30: 

305 
301 
302 
302 
303 

360 
417 
303 
304 
307 

366 
360 

168 
168 
167 

130 
120 
118 
12 1 
116 

116 
112 
I19 
i88 
i74 

gar 
- 

locity 
- 
O F  

- 
28 
28 
28 
28' 
9 

291 
59' 
59 
591 
591 

8. 
81 
8 :  
9( 
8!  

8 !  
8 :  
8: 
8' 
8€ 

18E 
291 

8:  
8e 
92 

198 
188 
202 
202 
20 1 

314 
296 
293 
298 
188 

188 
282 
!95 
598 
594 
e l .  
- 

- 
m/st 

__ 
26. 7 
42. 4 
14. 2 
14. 4 
13. 9 

15. 8 
15. 1 
7. 4 
28. 6 
39.8 

14. 2 
21. 7 
24. 2 
33. 8 
35. 7 

48. 8 
14. 8 
14. 8 
15. 0 
22.0 

27. 3 
30. 1 
21. 5 
28. 1 
36. 3 

14. 6 
15. 1 
15. 7 
35. 4 
35. 1 

15. 0 
15. 1 
15. 1 
14. 4 
14. 9 

15. 1 
13. 7 
14. 3 
15. 5 
15. 3 
~ 

- 
It/sec 

~ 

87. 5 
139 
46. 5 
47. 3 
45. 6 

51. 7 
49. 6 
24. 4 
93.6 
.30 

46. 6 
71. 1 
79. 5 
11 
17 

60 
48. 7 
48. 6 
49. 3 
72.  2 

89. 6 
98. 8 
70. 4 
92.  2 
19 

47. 9 
49. 7 
51. 4 
16 
15 

49. 3 
49.4 
49. 6 
47. 4 
49. 0 

19. 5 
15. 0 
16. 8 
jl. 0 
50. 1 - 

~ 

Inlel 
Mac t 

numbc 

~ 

0. 065: 
.0881 
,0341 
.035: 
,0398 

.038: 

.031' 
,015: 
,058: 
,081: 

,040: 
.062 I 
.069f 
.096i 
. 101 

. 139 

.042E 
,0424 
.0431 
.0630 

-0717 
.0734 
. 06  1 5  
.0802 
. 1033 

,0380 
,0397 
,0406 
.09 18 
.09 16 

,036 1 
,0366 
,0368 
,0351 
,0365 

.0369 
,0336 
,0347 
,032 1 
,0315 _ _ ~  

T Airflow 
- 
d s e  

- 
3. 62 
5. 31 
1. 84 
1. 85 
2.54 

1. 88 
1.34 
. 6 7  

2. 71 
3.95 

2.  53 
3.84 
5. 04 
7. 62 
7. 58 

9. 71 
2. 54 
2. 54 
2.55 
4. 27 

4. 31 
3. 72 
3. 72 
1. 99 
7. 48 

1 .  16 
2 .  16 
!. 16 
j. 85 
5. 90 

1.93 
1. 90 
L .  88 
I .  90 
!. 77 

!. 77 
!. 71 
I. 73 
I. 76 
I. 72 

- 
Ib/sc 

~~~ 

7. 9' 
11. 7 
4. 01 
4. 01 
5. 5! 

4. 1, 
2.9: 
1.  41 
5.91 
8. 7( 

5.  5E 
8.47 
11.1 
16. 8 
16. 7 

!l. 4 
5.6C 
5. 58 
5.62 
9. 42 

9.  50 
8. 20 
8.21 
1. 0 
6. 5 

4.77 
4. 77 
4. 77 
2. 9 
3.0 

4. 25 
4.  19 
4.  15 
4.18 
6. 10 

6. 1 1  
5.97 
6. 02 
6.09 
6. 00 

Fuel 
lir  ra 
tio 

I. 0131 
.013t 
.004t 
,008: 
.008( 

,007: 
,007: 
,0127 
.013L 
,0137 

.013€ 
,013: 
.013? 
,0132 
,0132 

,0136 
,004 1 
,0080 
. 0 100 
,0152 

0134 
0135 
0079 
0080 
0079 

0040 
0085 
0156 
0031 
006 

0043 
0044 
0099 
0173 
0075 

0069 
0075 
0077 
0123 
0130 

Exit tem- 
perature 

~ "" 

- 
K 

91 
88 
51 
70 
59 

71 
86 
,021 
.061 

.07' 

771 
791 
78: 
751 
73! 

73' 
411 
58: 
661 
85: 

857 
91: 
59: 
58E 
56 I 

473 
677 
934 
49 1 
500 

583 
577 
344 
125 
j87 

$88 

$99 
711 
)33 
)57 
- 

7 
9 
9 
1 
7 
9 

8 
2 
0 
6 
7 

8 

5 
2 
3 

3 

7 

1 
7 
1 
1 1  

I 1  
i 1  
I 
I 

I 

1 

11 
1 

I 

1: 
1. 
- 

- 
OF 

1191 
1141 
45! 
81: 
6 l! 

83: 
109: 
137f 
145; 
147f 

94c 
97; 
94i 
89: 
87C 

866 
286 
597 
730 
076 

083 
187 
619 
601 
550 

391 
758 
222 
423 
620 

590 
578 
060 
56  5 
777 

778 
799 
319 
399 
142 
~ 

Primary  fuel 
nozzle  pres- 

sure  differen 
tial - 

N/cm 

169 
179 
19. 6 

126 
57.4 

34. 3 
14.7 
11. 6 

136 
139 

165 
165 
167 
176 
17 1 

177 
16. 9 
59.2 
95.1 
170 

170 
172 
123 
181 
169 

13. 7 
58. 6 
195 
57.4 

220 

"." 

"." 

."" 

"." 

82.  7 

83.4 
81.  3 
64.  4 
.93 
.31 
~~~ ~ 

- 
psi 
- 

2  46 
2 59 
28. 
183 
83. 

49. 
21. 
16. 

198 
201 

2 40 
239 
242 
255 
248 

2 57 
24. ! 
85. ! 
138 
246 

2 47 
2 50 
179 
162 
245 

19. c 
85. c 
!83 
83.3 
I19 

"" 

"" 

"" 

20 

21 
18 
93.  5 
80 
90 

L 

Secondary fue 
nozzle  pres- 
sure  differ- 

ential 
~ 

N/cm' 

4. 1 
23. 4 

. 7  
"." 

""_ 
"". 

""_ 
"". 

."" 

8. 3 

2. 1 
6. 9 
19.3 
66. 2 
57.  2 

135. 1 
1. 4 
1. 4 
1. 4 
15. 2 

8. 9 
4. 8 

. 7  
2. 1 
8. 9 

""_ 
."" 
."" 
"." 

""_ 

"" 

"" 

3. 4 
. 7  

~~~ 

~ 

psi 

6 
34 
1 

" _  
". 

." 

" _  
." 

" - 
12 

3 
10 
28 
96 
83 

196 
2 
2 
2 

22 

13 
7 
1 
3 
13 

." 

." 

." 

." 

." 

." 

." 

.. 

" 

" 

" 

.. 

" 

5 
1 

. . " 

Correlating  parameter 
..: 

N)(K)(sec 

nl 

3. 49x10' 
2.77 
6. 17 
6.07 
4. 95 

~ ~. 

5. 32 
7. 99 
16. 5 
4.  55 
2.54 

4.  55 
2.98 
3.  14 
2.  46 
2.  23 

1. 54 
4.  16 
4.  19 
4.09 
3. 23 

2.98 
2.84 
2. 93 
2.33 
2.  13 

5. 39 
4. 88 
4. 74 
2. 54 
2.  55 

6. 27 
5. 88 
5. 72 
6. 38 
8. 46 

8. 34 
9.77 
9. 34 
5. 5 
5.9 

~ " 

(lb)(OR)(sec) 

It 3 

c~ ~ 

4 . 0 0 ~ 1 0 ~  
3.  17 
7. 07 
6. 96 
5. 67 

6. 10 
9.  16 
18. 9 
5. 21 
2. 91 

5. 21 
3. 41 
3.60 
2. 82 
2. 55 

1. 76 
4. 77 
4. 80 
4. 69 
3. 70 

3. 42 
3. 26 
3. 36 
2. 67 
2. 44 

6. 18 
5. 59 
5. 43 
2.91 
2. 92 

I. 18 
6. 74 
6. 55 
7. 31 
9. 70 

9.  56 
11. 2 
10.7 
17. 8 
18. 2 
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'EST RESULTS 

,o ted  in   inlet  total p r e s s u r e   c o l u m n .  1 
Hydroca r -  

bons  T 
- 

g/kg 
fuel  

7 .71 
- 

17 .3  
35. 1 
20 .1  
24 .0  

17. 7 
16.  4 
15. 0 
3. 91  
3.  25 

20 .8  
16 .4  
17.7 
24. 6 
2 8 . 9  

29. 5 
- 4 8 . 6  

30.  2 
24. 2 
18.3 

14. 1 
10 .2  
24.  4 
23.  2 
31. 5 

69.  2 
31. 6 
15.  4 
35 .0  
16. 8 

36.  1 
41.  8 
14.  1 
12. 6 
7 . 7 8  

8. 87 
16.  9 
7 .94  
6 . 7 1  
1. 20 
- 

! 

I 

I 

- 

- 
PP" 

~ 

2  13 
480 
333 
343 
395 

281 
260 
390 
107 
91  

576 
451 
480 
662 
718 

8 16 
409 
495 
495 
566 

385 
280 
394 
379 
500 

57 1 
552 
189 
224 
208 

320 
3 79 
286 
142 
120 

123 
160 

125 
I69 
32 
- 

Zarbon  mon- 
oxide - 

g/kg 
fuel  

_____ 

106 
176 
34.0 
80. 9 
78.  5 

52.6 
38. 0 
83 .9  
19. 2 
3 8 . 9  

131 
158 
I57 
! 00 
!46 

!45 
50. 4 
98. 5 

I17 
!36 

126 
. l l  
34 

.67 

' 17 

43.  4 
92. 6 
85. 5 
93.7 
02 

53.7 
60. 4 
55. 5 
29. 1 
42.  4 

50. 4 
41. 0 
43. 1 

3. 8 
4. 5! 

_____ 

- 
pPn1 

_____ 

1460 
2440 

16 1 
690 
645  

4 16 
30 1 

1090 
263 
545 

1820 
2  180 
2  140 
2700 
3320 

3400 
2  13 
8 10 

1195 
2110 

1130 
1530 
1085 
1370 
1760 

179 
808 

1360 
300 
628 

238 
274 
563 
512 
327 

3  58 
3  16 
341 

48 
61  

_____ 

Exhaus t   emis s ions  

Nitric  oxide 
~ 

g/kg 
fuel 

_____ 

0. 54 
. 2 3  
. 6 8  

1. 13  
. 6 5  

1. 08 
1. 76 
1.07 
1 .88  
1. 6 1  

. 2 3  

. 3 1  

. 16 

. 2 4  

. 2 4  

. 4 7  

. 7 6  

. 6 5  

. 5 2  

. 56 

. 5 5  

. 9 4  

. 5 3  

. 5 2  

. 40 

.26  

. 6 1  

. 4 7  

. 6 7  

. 8 7  

I. 21 
. 9 4  
. 7 4  
. 4 3  

I .  8 1  

1. 96 
1. 95 
1. 63  
1. 34 
2. 10 
_____ 

- 

ppm 

~ 

7 
3 
3 
9 
5 

8 
13 
13 
24 
21 

3 
4 
2 
3 
3 

6 
3 
5 
5 
8 

7 
12 

4 
4 
3 

1 
5 
7 
2 
5 

5 
4 
7 
7 

13  

13 
14  
12 
51 
26 

~ 

- 

:/$ 
rue1 

- 

1. 6C 
L .  64 
. 11 
. 4s 
. 7 1  

. 25 

. 16 

.24  

. 0 3  

. 0 8  

. 93 

. 18 

. 15 
I. 16 
I. 76 

!. 68 
. 3 4  
.84  
. 9 3  
. 00 

. 7 3  

. 6 2  

. 3 8  

. 7 6  
'. 44 

. 2 8  

. 57 

. 4 7  

. 6 9  

. 56 

. 9 0  

. 9 9  

. 2 9  

. 19 
" _  
". 

." 

." 

" _  

- 

115 
3 18 
11 
58 
82 

25  
16 
43 

5 
15 

180 
228 
219 
408 
522 

522 
20 
97 

134 
216 

140 
120 
157 
202 
277 

16 
70 

105 
31  
48 

56 
63  
41 
46 
." 

". 

." 

". 

". 

" _  

T Carbon  dioxide 

g/kg 
fuel  

2 . 8 1 ~ 1 0  
2. 40 
1. 56 
2. 40 
1. 92  

2. 21 
1. 88 
2. 32 
2. 25  
2. 13 

2.  45 
2.  26 
2. 28 
1. 95 
I .  88  

1. 97 
1. 7 1  
2 .22  
2.  16 
2. 12 

2. 35 
2.  46 
2.  23 
2. 28 
2.  33 

2. 14 
2.  80 
2. 83 
2 . 9 0  
2. 73  

1.88 
1. 94 
2. 65 
2.   83 
"" 

"" 

"" 

"" 

"" 

"" 

ppm 

24. 6x1O3 
21.  2 

4. 7 
13. 0 
10.0 

10. 1 
8. 6 

19. 1 
19. 6 
18 .9  

21. 6 
19 .8  
1 9 . 7  
16. 7 
16. 1 

17 .4  
4. 6 

11. 6 
14.  1 
20. 9 

10. 4 
21. 6 
11. 5 
11. 9 
12. 0 

5. 6 
15. 5 
28. 6 
5.  9 

IO.  7 

5. 3 
5. 6 

17. 1 
31. 7 
"" 

"" 

"" 

"" 

"" 

."_ 

-r 
Combus- 
tion  effi- 
c iency 

96. 2 
90. 7 
51. 8 
81. 8 
95.  2 

95. 8 
93.  4 
92. 6 
96. 1 
97. 1 

88. 0 
92 .0  
90.  4 
85. 5 
82. 6 

80. 0 
66. 2 
87. 0 
88 .0  
92. 1 

94.  4 
95.  3 
90. 6 
87. 6 
7 7 .  9 

64.  4 
92. 3 
94. 1 
93. 6 
94. 1 

79.  4 
79 .0  

101.5 
98.  3 
90. 6 

97 .8  
94.  8 
94.  2 
97. 0 
97. 6 
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TABLE I. - Concluded. 

[ASTM A-1  fuel   used  except   when 

Inlet 
total  
p r e s .  
s u r e ,  
a tm 

- 
4.0: 
4.0: 
4.0: 
4.0: 
4. O i  

4. O i  
4.01 
4. O i  
8. 1E 
8.15 

8.63 
8.71 

10.4 
10 .7  
10 .4  

10.  5 
10.  5 
1 0 . 4  
12.4 
12.5 

10.  3 
10 .2  
10.  5 
10.4 
10.  4 

10. 5 
10.2 
10 .3  
10 .4  
10. 4 

10.  5 
a12. 6 

20. 7 
20.7 
20. I 

20.3 
20.3 
20. 6 
20.6 
20.6 

lnlet  tem- 
p e r a t u r e  T - 
K 

- 
308 
419 
586 
553 
585 

587 
582 
586 
586 
585 

582 
569 
423 
308 
418 

3  12 
312 
420 
582 
592 

582 
583 
303 
412 
584 

417 
414 
416 
58 1 
581 

583 
587 
547 
553 
553 

543 
536 
547 
549 
551 
- 

- 
OF 

- 

9. 
29' 
59 1 

53: 
59: 

59t 
58: 
59: 
59 : 
59: 

58: 
56 f 
30; 

9r 
29; 

10; 
10; 
29f 
587 
60: 

587 
590 
86 

281 
592 

29 1 
286 
289 
586 
586 

589 
596 
52 5 
535 
535 

511 
504 
525 
j28 
531 
- 

Reference   ve-  
locity 

~ 

m / s e  

~ 

15. 3 
14. 7 
32. 0 
43 .0  
15. 5 

15.  5 
15. 2 
7. 9 
7. 6 
7. 6 

28. 6 
28.0 
15. 2 
15. 1 
14.6 

15. 7 
15. 4 
15. 0 
15. 8 
16. 0 

15. 3 
15. 9 
14. 6 
14. 9 
15. 2 

14. 8 
15. 4 
14.6 
14. 4 
14. 4 

14. 3 
16. 0 
14.0 
14. 1 
.4. 1 

3. I 
.3. 8 
.3 .9  
.3.9 
3. 8 

~ 

- 
f t / sec  

~ 

50. 2 
48. 2 

105 
141 

51. 0 

51. 0 
49. 9 
26. 0 
25. 0 
24. 8 

93 .9  
91.  9 
50. 0 
49.  2 
47.  9 

51.  5 
50. 5 
49.  1 
52 .0  
52.  4 

50. 2 
52. 2 
48. 1 
48. 8 
50. 0 

48. 6 
50.  5 
48 .0  
47.  3 
47. 1 

41. 0 
52.  4 
45.  9 
46.  4 
46.  4 

44. 8 
45. 4 
45. 7 
45. 7 
45.  4 

~ 

I ____ 

Inlet 
Mach 

numbe 

~ 

0.043L 
. 0 3 5 t  
. 065' 
,0905 
.032(  

,032C 
. 0 3  14 
,0163 
,015E 
,0156 

, 0 5 9 1  
.0584 
.0369 
,0427 
,0356 

,0442 
.0434 
,0364 
,0326 
,0327 

. 0 3  16 
, 0 3 2 8  
,0419 
. 0 3 6 5  
,0314 

, 0 3 6  1 
, 0 3 7 1  
,0357 
, 0 2 9 8  
.0296 

,0296 
,0329 
.0298 
,0299 
,0299 

,0292 
, 0 2 9 8  
,0297 
,0296 
.0294 

~ 

Airflow 

5. 1 3  
3.62 
5. 61 
8. 03 
2. 74 

2. 74 
2. 74 
1. 40 
2.  74 
2. 70 

10. 8 
10 .9  
9.  53 

13.  3 
9. 30 

13.  5 
13.  3 
9. 53 
8. 62  
8. 62  

6. 94 
7.08 

12.9 
9. 62 
6. 94 

9. 53 
9.  66 
9. 71  
6. 62 
6. 58 

6. 58 
8. 80 

13. 5 
13. 5 
13.  5 

13.  1 
13.  4 
13. 4 
13.  4 
13. 2 

~ 

Ib/se 

11.3 
7 . 9 t  

12.  4 
17 .7  
6 .01  

6.02 
6 . 0 3  
3. OE 
6.05 
5.95 

23.  9 
24.  1 
21.0 
29.  3 
20. 5 

29 .8  
29.  3 
21.0 
19.0 
19.0 

15.  3 
15. 6 
28. 5 
21. 2 
15.  3 

21.0 
21. 3 
21. 4 
14. 6 
14.  5 

14. 5 
19.  4 
19.8 
19.8 
!9.8 

! E .  9 
!9. 6 
!9. 6 
!9. 6 
!9.2 

~ 

Fuel- 
t i r   r a .  

t io 

- 
). 0133 
,0135 
,0126 
.013  
.0082 

,0144 
,0130 
. 0127 
.0123 
,0130 

,0129 
,0126 
,0130 
,0130 
.0132 

.0122 

.0131 

.0129 
, 0 1 3 1  
, 0 1 3 1  

.0126 

.0125 
,0074 
. 0 0 7 5  
.0076 

, 0 0 4  1 
,0078 
, 0 1 5 3  
.0043 
,0084 

, 0 1 5 5  
, 0 1 0 1  
, 0 0 3 8  
, 0 0 7 8  
,0130 

. 0 0 4 1  
,0080 
,0129 
,008  1 
, 0 0 4  
- 

- 
K 

~ 

84. 
931 

105( 
102! 
88:  

110: 
105 
102L 
102c 
106: 

1031 
103: 
90I 
79: 
92 1 

80( 
81C 
91' 

1045 
1065 

1047 
103s 
591 
704 
863 

573 
712 
983 
737 
58 1 

1140 
1009 
695 
844 

1027 

706 

844 
1017 
853 
707 

~ ~~ 

s u r e   d i f f e r e n .  
t ial  - 

1059  17( 
1229 17: 
1430  19: 
1393 
1129 7: 

1536 161 
1432 167 
1393 47 
1387 195 
1452 12: 

1411 22C 
1400 185 
1176 172 
973 28E 

1197  201 

980 182 
1015 24: 
1186  243 
1428  184 
1464 - - -  

1424  192 
1411 205 
605 184 
808 187 

1094  166 

572 152 
822  173 

1310 177 
867 78 
586 163 

1592  169 
1356 - - -  
793  197 

1060 183 
1389 238 

810 149 
,060 140 
,370 150 
,076 146 
814 146 

psi  
~ 

247 
249 
286 
"" 

110 

245 
242 

68. ' 
289 
181 

333 
2 1  1 
2 58 
418 
292 

265 
355 
352 
267 

278 
198 
167 
112 
141 

!20 
251 
! 57 
I 1 4  
!36 

!45 

!86 
!66 
I46 

! 16 
! 16 
! 17 
! 12 
! 12 
- 

L 

Secondary fuf 
nozzle   p res -  
s u r e   d i i i e r -  

entia1 - 
N,'cm2 

23. 4 
6. 2 

22. 1 

~ 

."" 

"." 

2 . 8  
.I 

."" 

""_ 
."" 

158.6 
153. 1 
121.4  
260.6 
108 .2  

248. 2 
258.6 
103.  4 
99 .3  

_""  
40. 0 
39.  3 
55. 8 
22.  1 
13. 8 

"". 

29. 6 
164.  1 
."" 

7.  6 

6 6 .  2 
."" 

1 . 4  
71. 0 

242.0 

11.0 
86.  9 

149. 6 
77. 2 

1. 4 
~~~ ~ ~ 

- 

~ ~- 
psi 

34 
9 

32 
." 

". 

4 
1 

." 

". 

." 

230 
222 
176 
378 
152 

360 
375 
150 
144 
". 

58 
57 
8 1  
32 
20 

." 
43 

!38 
." 

11 

96 
." 

2 
LO3 
151 

16 
26 

! 17 
12 
2 

Cor re l a t ing   pa rame te r  

(N)(K)(sec 

n, 

- 

8. 25x10' 
11.7 
7 . 5 5  
5. 31 

15. 5 

15.  5 
15. 9 
30.  2 
63. 2 
64. 0 

17. 8 
18.0 
29.  3 
22.7 
30.  2 

21. 3 
21. 7 
29.  8 
46.6 
47. 0 

39 .9  
37. 9 
22 .0  
29.  2 
40. 5 

30. 0 
27. 6 
27. 1 
42. 5 
42. 9 

43. 1 
46.  9 
81.  9 
81.  9 
8 2 . 0  

81.9 
79.9 
8 2 . 0  
82. 5 
83 .2  

(lb)(oR)(sec), 

ft3 

~~~ 

9. 4 6 ~ 1 0 ~  
13. 4 
8. 65  
6. 08 

17 .7  

17 .7  
18. 2 
34 .6  
72.  4 
73.  4 

20.  4 
20. 6 
33. 6 
25.  4 
34. 6 

24.  4 
24.  9 
34.  1 
53.4 
53. 9 

45. 7 
43. 4 
25. 2 
33.  4 
46.  4 

34.  4 
31.  8 
31. 1 
48. 7 
49. 1 

49.  4 
53.8 
93 .9  
93.  9 
94. 0 

93 .9  
91. 6 
94 .0  
9 4 . 5  I 

95.  4 
. 

aNatural   gas   iuel .  
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'EST RESULTS 

oted in in l e t   t o t a l   p re s su re   co lumn 3 
Hydrocar-  
__I 

8.83 

29 1. 13 
52 1.89 

239 

. I 9   2 1  

. 9 5  16 

. 3 4  10 

. 6 1  16 

. 6 2  16 
5. 11 130 
1 .02  27 

4 .06  

4.74 
32 1 . 2 5  

107 

37  1 .37 
138 5. 19 
126 

2 . 4 1  
60 2 . 2 5  
60 

11 . 4 1  
127 4 .74  
21 .80 

. 6 2  16 
1 . 4 5  37 

13 .3  203 
6 1 0  94 
1.60  25 

3 .07  
47 2.93 
26 

12 . I O  
16 -1. 80 
26 . 8 3  

. 2 8  9 

. 4 8  10 
I. 14 56 
2 .62  42 
1 .66  44 

3 .09  

. 3 4  
16 . 9 8  
26 

8 . 9 7  
8 . 4 8  
9 

:arbon  mon- 
oxide - 

:/kg 
fue l  

61.0 
22. 5 
15. 7 
28.3 

__ 

6. 77 

3. 06 
3.  46 

10.9 
. 4 0  

1. 13  

4 .93  
6.  44 

11.7 
28. 7 
1 1 . 9  

27. 2 
30. 8 
11. 8 

1. 79 
2.02 

2. 64 
2. 66 

35.  4 
19.6 
3 . 7 1  

11. 1 
20.  5 
13.  8 
4. 06 
3. 59 

2. 15 
. 3 9  

1. 28 
1 .75  
2. 03 

1. 18 
1.82 
2 .96  
1. 22 

. 4 8  
~~ 

- 
ppm 

830 
310 
203 
376 

57 

45  
46 

141 
5 

15 

6 5  
83 

155 
382 
160 

340 
412 
156 
24 
27 

34 
34 

269 
151 
29 

47 
164 
216 

18 
31  

34 
4 
5 

14 
27 

5 
15 
39 
10 

2 
- 

Exhaus t   emis s ions  

T Nitr ic   oxide r 
~ 

d k g  
fuel  

~ 

1. 03  
1. 25 
2. 17 
2.  27 
3. 07 

1. 25 
2. 67 
1. 24 
5. 36 
.81 

4 .22  
2. 92 
2.  82 
3. 06 
2.  46 

1. 64  
1. 13 
1. 14 
4. 16 
5.  47 

"" 

2 . 9 3  
1. 13 
1. 81 
2 .33  

2.   03 
1. 87 
. 9 6  

3. 14 
3. 10 

1. 49 
1. 0 3  
4. 92 
2 .00  
1. 6 1  

3. 06 
4. 19 
3 .35  
5.  57 
5. 1 4  

~~ ~ 

- 

'Pm 

~ 

13 
16 
26 
28  
24 

17 
33 
15 
63  
10 

52 
35 
35 
38 
31 

19 
14 
14 
52 
68 

35 
8 

13 
17 

" 

8 
14 
14 
13 
25 

22 
11 
18 
15 
20 

12 
32 
41 
43 
22 

~ 

Hyd 

d k g  
~ 

fuel  

___ 

0. 31 
. 0 5  
. O l  
. 0 4  
. 0 2  

0 
0 

. O l  
"" 

"_. 

"" 

"" 

"" 

"" 

"" 

"" 

. 18 

. O l  
"" 

"" 

0 
"" 

. 2 1  

. 0 4  
rrarl 

. 0 3  
"" 

"" 

"" 

"" 

"" 

. O l  
"" 

"" 

"" 

"" 

0 
0 

"" 

. 0 2  
___ 

NASA-Langley, 1972 - 28 E -64 32 

- 

:en - 
ppm 

~ 

59 
10 

2 
8 
2 

0 
0 
1 
"" 

"" 

"" 

"" 

"" 

"" 

"" 

34 
2 

"" 

"" 

"" 

0 

22.  5 
4. 5 

rrace 

"" 

2 
"" 

"" 

"" 

"" 

"" 

1 
"" 

"" 

"" 

"" 

"" 

0 
0 
1 

~ 

T Carbon  dioxide 

g / t  
fuel  

3 .  24x103 
3 .  42 
3 .  33  
3 .  20 
3 .  29 

3. 6 4  
3 .  32 
3. 39 
. - - - . - . - 
........ 

- - . . - - . . 
- - - - - - . . 
........ 

........ 

........ 

........ 

3. 7 1  
3.  74 
........ 

. . - . - - - . 

2. 69  
........ 

2. 0 3  
2 .43  
2. 12 

2. 12 
2 .04  
1. 90 
2 . 0 9  
1. 92 

1 .99  
2. 50 
........ 
........ 

- - - - - - . . 

- - . - - . - . 
- -. - - - - - 
3 .34  
3. 71 
3 . 4 3  

ppm 

2 8 . 0 ~ 1 0 ~  
30.0 
27. 3 
27.0 
17.6 

34.0 
28.0 
28.0 
. - - - - - - - 
........ 

........ 

- - - - - - - - 
........ 

........ 

........ 

........ 

31. 6 
31.  3 
........ 

. - - - - - - - 

22.0 
. - - - - - - - 

9 . 8  
11.9 
10 .5  

5 .7  
10.4 
1 8 . 8  
5 .9  

10 .5  

20 .0  
16.  3 
........ 

........ 

........ 

. - - - - - - - 

........ 

28 .0  
19.6 
9 . 0  

:ombus- 
ion effi- 
c iency 

10 1 
99. 7 
98. 8 
97. 5 
94. 8 

98.  2 
9 7 . 0  
94. 0 
96.  2 
98. 1 

95.  2 
98. 7 
96. 3 
94.  4 
98.  2 

99.  7 
97. 6 
98.  6 
95.  4 
97. 9 

9 9 . 0  
97. 8 
94. 1 
97.  5 
95.  5 

92.  7 
94.  9 
96.  7 
92.  5 
95.  8 

98.  2 
102.3 
98.  4 
96. 6 
97 .0  

100 
99. 0 
96.  4 
96. 7 
9 7 . 8  
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